Tìm các số nguyên x;y thoả mãn x2 + 2x + y =xy
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=> x-1 \(\in\) Ư(13) = { 1,13,-1,-13 }
Ta có bảng :
x-1 | 1 | 13 | -1 | -13 |
x | 2 | 14 | 0 | -12 |
Vậy các số nguyên x là -12,2,14
13/x-1 la so nguyen thi 13 chia het cho x-1
suy ra x-1 thuoc uoc cua 13
ma UOC CUA 13 LA 13;1;-1;-13
khi x-1=13 thi x=14
khi x-1=1 thi x=2
khi x-1 =-1 thi x=0
khi x-1 =-13 thi x=-12
vay cac so nguyen x la 14;2;0;-12
-2/x=y/3
=> -2.3 = xy
xy= -6
Mà x>0>y => x là số nguyên âm còn y là số nguyên dương
Lập bảng ( cái này bn tự lâp)
=> Các cặp số nguyên x,y là: x=-2,y=3 ; x= -3,y=2; x=-1,y=6 ; x=-6,y= 1
Do x-y = 4 => x= 4+y
thjays x=4+y vào x-3/y-2=3/2, có:
x-3/y-2=3/2 = 4+y-3/y-2 = 3/2 = y+1/y-2=3/2
=> 2(y+1)= 3(y-2)
2y+2 = 3y-6
3y-2y = 2+6
y=8
thay y= 8 vào x=4+y, có:
x= 4+ 8 = 12
vạy x=12; y=8
a: Trường hợp 1: p=2
=>p+11=13(nhận)
Trường hợp 2: p=2k+1
=>p+11=2k+12(loại)
b: Trường hợp 1: p=3
=>p+8=11 và p+10=13(nhận)
Trường hợp 2: p=3k+1
=>p+8=3k+9(loại)
Trường hợp 3: p=3k+2
=>p+10=3k+12(loại)
Để p + 11 là số nguyên tố thì p là số chẵn (nếu p là số lẻ thì p + 11 là số chẵn \(\Rightarrow p+11⋮2\) mà chia hết cho một số thì không phải là số nguyên tố)
Trong tập hợp các số nguyên tố chỉ có 2 là số chẵn. Vậy p = 2
b) Để p + 8, p + 10 là số nguyên tố thì p là số lẻ (nếu p là số chẵn thì \(p+8⋮2,p+10⋮2\) mà chia hết cho một số thì không phải là số nguyên tố
Nếu p = 3, p + 8 = 3 + 8 = 11 là số NT; p + 10 = 3 + 10 = 13 là số NT (chọn)
Nếu \(p=3k\left(k\in N|k>1\right)\)thì p là hợp số (loại)
Nếu \(p=3k+1\left(k\in N\right)\Rightarrow p+8=3k+1+8=3k+9⋮3\) (loại)
Nếu \(p=3k+2\left(k\in N\right)\Rightarrow p+10=3k+2+10=3k+9⋮3\)
(loại)
Vậy p=3
x2+xy=x+y+3
⇔\(x^2+xy-x-y=3\)
⇔(\(x^2+xy\))−(\(x+y\))=3
⇔\(x\left(x+y\right)-\left(x+y\right)\)=3
⇔(x−1)(x+y)=3
Vì x, y là các số nguyên nên x−1,x+ylà các số nguyên.
Do đó (x−1)(x+y)=3=1.3=3.1=(−1).(−3)=(−3).(−1)
Ta có bảng sau:
Vậy phương trình có tập nghiệm: (x;y)=
(−2;1);(0;−3);(2;1);(4;−3)