K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét tứ giác ADHE có 

\(\widehat{ADH}+\widehat{AEH}=180^0\)

Do đó ADHE là tứ giác nội tiếp

 

15 tháng 10 2021

a: Xét tứ giác BEDC có \(\widehat{BEC}=\widehat{BDC}=90^0\)

nên BEDC là tứ giác nội tiếp

hay B,E,D,C cùng thuộc một đường tròn

Tâm I là trung điểm của BC

b: Xét ΔADB vuông tại D và ΔAEC vuông tại E có

\(\widehat{EAC}\) chung

Do đó: ΔADB\(\sim\)ΔAEC

Suy ra: \(\dfrac{AD}{AE}=\dfrac{AB}{AC}\)

hay \(AE\cdot AB=AD\cdot AC\)

a) Xét tứ giác BEDC có 

\(\widehat{BEC}=\widehat{BDC}\left(=90^0\right)\)

\(\widehat{BEC}\) và \(\widehat{BDC}\) là hai góc cùng nhìn cạnh BC

Do đó: BEDC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

30 tháng 10 2021

Nhanh giùm mình với ạ

31 tháng 10 2021

a: Xét tứ giác BCDE có 

\(\widehat{BEC}=\widehat{BDC}=90^0\)

nên BCDE là tứ giác nội tiếp

hay B,C,D,E cùng thuộc một đường tròn

a, Gọi I là trung điểm của BC 

Tam giác BEC vuông tại E trung tuyến EI nên IE = IB = IC 

Tam giác BFC vuông tại F trung tuyến FI nên IF = IB = IC

Vậy tứ giác BEFC cùng thuộc đường tròn tâm I bán kính IB 

b,  Ta có :

\(\widehat{ACK}=90^0\) ( góc nội tiếp chắn nửa đường tròn )

= > BH // CK ( cùng vuông góc với AC )

Tương tự ta cũng có CH // BK 

= > BHCK là hình bình hành

= > 2 đường chéo cắt nhau tại trung điểm của mỗi đường

Mà I là trung điểm của BC 

= > H,I,K thẳng hàng ( đpcm )

c, Dễ thấy các tứ giác AFHE và BFHD nội tiếp nên :

\(\widehat{DFE}=\widehat{DFH}+\widehat{HFE}=\widehat{HBD}+\widehat{HAF}=2\widehat{HBD}=2.\left(90^0-\widehat{C}\right)=180^0-2\widehat{C}\)

( Do góc HBD và HAF cùng phụ với góc C )

Lại có :

Tam giác EIC cân tại I nên :

\(\widehat{EIC}=180^0-\widehat{IEC}-\widehat{ECI}=180^0-2\widehat{C}\)

\(=>\widehat{EIC}=\widehat{DFE}\)

= > Tứ giác DFEI là tứ giác nội tiếp 

= > D,F,E,I cùng thuộc 1 đường tròn