K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1: x^2-9+3x(x-3)

=(x-3)(x+3)+3x(x-3)

=(x-3)(x+3+3x)

=(4x+3)(x-3)

2: =x^4+5x^2+4x+5

=x^4+x^3+x^2-x^3-x^2-x+5x^2+5x+5

=(x^2+x+1)(x^2-x+5)

3: =x^4+2x^2+1-x^2

=(x^2+1)^2-x^2

=(x^2-x+1)(x^2+x+1)

28 tháng 8 2023

1) \(x^2-9+3x\left(x-3\right)\)

\(=\left(x^2-9\right)+3x\left(x-3\right)\)

\(=\left(x+3\right)\left(x-3\right)+3x\left(x-3\right)\)

\(=\left(x-3\right)\left(x+3+3x\right)\)

\(=\left(x-3\right)\left(4x+3\right)\)

2) \(x^4+5x^2+4x+5\)

\(=x^4+x^3+x^2-x^3-x^2-x+5x^2+5x+5\)

\(=x^2\left(x^2+x+1\right)-x\left(x^2+x+1\right)+5\left(x^2+x+1\right)\)

\(=\left(x^2-x+5\right)\left(x^2+x+1\right)\)

3) \(x^4+x^2+1\)

\(=x^4+x^3+x^2-x^3-x^2-x+x^2+x+1\)

\(=x^2\left(x^2+x+1\right)-x\left(x^2+x+1\right)+\left(x^2+x+1\right)\)

\(=\left(x^2-x+1\right)\left(x^2+x+1\right)\)

5 tháng 6 2019

\(\frac{x^3-x^2-x-2}{x^5-3x^4+4x^3-5x^2+3x-2}\)

\(=\frac{x^3-2x^2+x^2-2x+x-2}{x^5-2x^4-x^4+2x^3+2x^3-4x^2-x^2+2x+x-2}\)

\(=\frac{\left(x^3-2x^2\right)+\left(x^2-2x\right)+\left(x-2\right)}{\left(x^5-2x^4\right)-\left(x^4-2x^3\right)+\left(2x^3-4x^2\right)-\left(x^2-2x\right)+\left(x-2\right)}\)

\(=\frac{x^2\left(x-2\right)+x\left(x-2\right)+\left(x-2\right)}{x^4\left(x-2\right)-x^3\left(x-2\right)+2x^2\left(x-2\right)-x\left(x-2\right)+\left(x-2\right)}\)

\(=\frac{\left(x-2\right)\left(x^2+x+1\right)}{\left(x-2\right)\left(x^4-x^3+2x^2-x+1\right)}=\frac{x^2+x+1}{x^4-x^3+2x^2-x+1}\)

29 tháng 9 2018

\(2x^3-50x=0\)

<=>  \(2x\left(x^2-25\right)=0\)

<=>   \(2x\left(x-5\right)\left(x+5\right)=0\)

đến đây

bạn tự giải nhé

hk tốt   

13 tháng 10 2023

a) Xem lại đề em nhé!

b) (6x - 5)(x + 8) - (3x - 1)(2x + 3) - 9(4x - 3)

= 6x² + 48x - 5x - 40 - 6x² - 9x + 2x + 3 - 36x + 27

= (6x² - 6x²) + (48x - 5x - 9x + 2x - 36x) + (-40 + 3 + 27)

= -10

Vậy giá trị của biểu thức đã cho không phụ thuộc vào giá trị của biến

13 tháng 10 2023

a)Viết đề sai : ngoặc đầu (5x - 2)

 
24 tháng 8 2019

\(a,-5x\left(x-3\right)\left(2x+4\right)-\left(x+3\right)\left(x-3\right)+\left(5x-2\right)\left(3x+4\right)\)

\(=-5x\left(2x^2-x-12\right)-\left(x^2-9\right)+15x^2+20x-6x-8\)

\(=-10x^3+5x^2+60x-x^2+9+15x^2+20x-6x-8\)

\(=-10x^3+19x^2+74x+1\)

\(b,\left(4x-1\right)x\left(3x+1\right)-5x^2.x\left(x-3\right)-\left(x-4\right)x\left(x-5\right)\)\(-7\left(x^3-2x^2+x-1\right)\)

\(=\left(4x^2-x\right)\left(3x+1\right)-5x^4-15x^3-\left(x^2-4x\right)\left(x-5\right)\)\(-7x^3+14x^2-7x+7\)

\(=12x^3+x^2-x-5x^4-15x^3-x^3+9x^2+20x\)\(-7x^3+14x^2-7x+7\)

\(=-5x^4-11x^3+24x^2+12x+7\)

\(c,\left(5x-7\right)\left(x-9\right)-\left(3-x\right)\left(2-5x\right)-2x\left(x-4\right)\)

\(=5x^2-52x+63-6+17x-5x^2-2x^2+8x\)

\(=-2x^2-27x+57\)

24 tháng 8 2019

\(d,\left(5x-4\right)\left(x+5\right)-\left(x+1\right)\left(x^2-6\right)-5x+19\)

\(=5x^2+21x-20-x^3-x^2+6x+6-5x+19\)

\(=-x^3+4x^2+22x+5\)

\(e,\left(9x^2-5\right)\left(x-3\right)-3x^2\left(3x+9\right)-\left(x-5\right)\left(x+4\right)-9x^3\)

\(=9x^3-27x^2-5x+15-9x^3-27x^2-x^2+x+20-9x^3\)

\(=-9x^3-55x^2+4x+35\)

\(g,\left(x-1\right)^2-\left(x+2\right)^2\)

\(=x^2-2x+1-x^2-4x-4\)

\(=-6x-3\)

18 tháng 1 2022

một đòn bẫy dài một mét .đặt ở đâu để có thể dùng 3600n có thể nâng tảng đá nặng 120kg?

12 tháng 4 2023

a.

\(\left|5x\right|=3x+8\Leftrightarrow\left[{}\begin{matrix}-5x=3x+8\\5x=3x+8\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=4\end{matrix}\right.\)

b.

\(\left|-4x\right|=-2x+11\Leftrightarrow\left[{}\begin{matrix}-4x=-2x+11\\4x=-2x+11\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{11}{2}\\x=\dfrac{11}{6}\end{matrix}\right.\)

c.

\(\left|3x-1\right|=4x+1\Leftrightarrow\left[{}\begin{matrix}-3x+1=4x+1\\3x-1=4x+1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)

d.

\(\left|3-2x\right|=3x-7\Leftrightarrow\left[{}\begin{matrix}-3+2x=3x-7\\3-2x=3x-7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=2\end{matrix}\right.\)

e.

\(9-\left|-5x\right|+2x=0\Leftrightarrow\left[{}\begin{matrix}9-5x+2x=0\\9+5x+2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{9}{7}\end{matrix}\right.\)

f.

\(\left(x+1\right)^2+\left|x+10\right|-x^2-12=0\Leftrightarrow\left[{}\begin{matrix}x^2+2x+1-x-10-x^2-12=0\\x^2+2x+1+x+10-x^2-12=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=21\\x=\dfrac{1}{3}\end{matrix}\right.\)