K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 7 2017

\(=\sqrt{8}:\sqrt{8}=1\)

7 tháng 7 2017

\(\sqrt{\frac{72}{9}}:\sqrt{8}\)

\(=\sqrt{8}:\sqrt{8}\)

\(=1\)

a) Ta có: \(\sqrt{45}:\sqrt{80}\)

\(=\sqrt{\frac{45}{80}}=\sqrt{\frac{9}{20}}\)

\(=\frac{3}{2\sqrt{5}}\)

b) Ta có: \(\sqrt{\frac{3}{15}}:\sqrt{\frac{36}{45}}\)

\(=\sqrt{\frac{1}{5}:\frac{4}{5}}\)

\(=\sqrt{\frac{1}{5}\cdot\frac{5}{4}}\)

\(=\sqrt{\frac{1}{4}}=\frac{1}{2}\)

c) Ta có: \(\sqrt{\frac{72}{9}}:\sqrt{8}\)

\(=\frac{\sqrt{8}}{\sqrt{8}}=1\)

d) Ta có: \(\sqrt{\frac{288}{169}}:\sqrt{\frac{8}{225}}\)

\(=\sqrt{\frac{288}{169}:\frac{8}{225}}\)

\(=\sqrt{\frac{288}{169}\cdot\frac{225}{8}}\)

\(=\sqrt{\frac{8100}{169}}=\frac{90}{13}\)

20 tháng 7 2020

a, \(=7\sqrt{2}-6\sqrt{2}+\frac{1}{2}.2\sqrt{2}=\sqrt{2}+\sqrt{2}=2\sqrt{2}\)

b, \(=4\sqrt{a}+4\sqrt{10a}-9\sqrt{10a}=4\sqrt{a}-5\sqrt{10a}\)

c, \(=6+\sqrt{15}-\sqrt{60}=6+\sqrt{15}-2\sqrt{15}=6-\sqrt{15}\)

Rút gọn

a) Ta có: \(\sqrt{98}-\sqrt{72}+\frac{1}{2}\sqrt{8}\)

\(=\sqrt{2}\left(\sqrt{49}-\sqrt{36}+\frac{1}{2}\sqrt{4}\right)\)

\(=\sqrt{2}\left(7-6+\frac{1}{2}\cdot2\right)\)

\(=\sqrt{2}\left(1+1\right)=2\sqrt{2}\)

b) Ta có: \(\sqrt{16a}+2\sqrt{40a}-3\sqrt{90a}\)

\(=\sqrt{a}\left(\sqrt{16}+2\sqrt{40}-3\sqrt{90}\right)\)

\(=\sqrt{a}\left(4+4\sqrt{10}-9\sqrt{10}\right)\)

\(=\sqrt{a}\left(4-5\sqrt{10}\right)\)

\(=4\sqrt{a}-5\sqrt{10a}\)

c) Ta có: \(\left(2\sqrt{3}+\sqrt{5}\right)\cdot\sqrt{3}-\sqrt{60}\)

\(=6+\sqrt{15}-\sqrt{60}\)

\(=6-\sqrt{15}\)

13 tháng 7 2021

`a)sqrt{5x-2}=3(x>=2/5)`

`<=>5x-2=9`

`<=>5x=11`

`<=>x=11/5(tm)`

`b)sqrt{x^2-4x+4}-5=0`

`<=>\sqrt{(x-2)^2}=5`

`<=>|x-2|=5`

`<=>` \(\left[ \begin{array}{l}x-2=5\\x-2=-5\end{array} \right.\) 

`<=>` \(\left[ \begin{array}{l}x=7\\x=-3\end{array} \right.\) 

`c)3sqrt{4x+8}-sqrt{9x+18}+9sqrt{(x+2)/9}=sqrt{72}(x>=-2)`

`<=>6sqrt{x+2}-3sqrt{x+2}+3sqrt{x+2}=sqrt{72}`

`<=>6sqrt{x+2}=6sqrt2`

`<=>sqrt{x+2}=sqrt2`

`<=>x+2=2`

`<=>x=0(tm)`

13 tháng 7 2021

\(a,ĐK:x\ge\dfrac{2}{5}\)

\(\Leftrightarrow5x-2=9\)

\(\Leftrightarrow5x=11\)

\(\Leftrightarrow x=\dfrac{11}{5}\)

\(b,\)

\(\Leftrightarrow x^2-5x+4=25\)

\(\Leftrightarrow x^2-5x-21=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5+\sqrt{109}}{2}\\x=\dfrac{5-\sqrt{109}}{2}\end{matrix}\right.\)

\(c,\)

\(\Leftrightarrow6\sqrt{x+2}-3\sqrt{x+2}+9\cdot\sqrt{\dfrac{x+2}{9}}=6\sqrt{2}\)

\(\Leftrightarrow2\sqrt{x+2}-\sqrt{x+2}+3\cdot\sqrt{\dfrac{x+2}{9}}=2\sqrt{2}\)

Đặt \(\sqrt{x+2}=a\) ta có (1)

\(2a-a+3\cdot\dfrac{a}{\sqrt{9}}=2\sqrt{2}\)

\(\Leftrightarrow a+3\cdot\dfrac{a}{3}=2\sqrt{2}\)

\(\Leftrightarrow2a=2\sqrt{2}\)

\(\Leftrightarrow a=\sqrt{2}\)

Thay \(a=\sqrt{2}\) vào (1) ta có

\(\sqrt{x+2}=\sqrt{2}\)

\(\Leftrightarrow x+2=2\)

\(\Leftrightarrow x=0\)

2 tháng 1 2018

Ta có :

\(a^2=72+\sqrt{72+\sqrt{72+\sqrt{72+.......}}}\)

\(\Leftrightarrow a^2=72+a\Leftrightarrow a^2-a-72=0\Leftrightarrow\left(a-9\right)\left(a+8\right)=0\)

\(\Rightarrow\orbr{\begin{cases}a=9\\a=-8\end{cases}}\)

Mà a > 0 nên a = 9 \(\Rightarrow\left[a\right]=9\)

NV
5 tháng 6 2019

\(\sqrt{2-2.\frac{1}{2}\sqrt{2}+\frac{1}{4}}.\sqrt{8-2.2\sqrt{2}.\frac{1}{4}+\frac{1}{16}}=\sqrt{\left(\sqrt{2}-\frac{1}{2}\right)^2}\sqrt{\left(2\sqrt{2}-\frac{1}{4}\right)^2}\)

\(=\left(\sqrt{2}-\frac{1}{2}\right)\left(2\sqrt{2}-\frac{1}{4}\right)=\frac{33-10\sqrt{2}}{8}\)

\(\sqrt{2+2\sqrt{2}+1}.4\sqrt{\frac{288+2\sqrt{288}+1}{16}}=\sqrt{\left(\sqrt{2}+1\right)^2}.4\sqrt{\frac{\left(12\sqrt{2}+1\right)^2}{4^2}}\)

\(=\left(\sqrt{2}+1\right)\left(12\sqrt{2}+1\right)=25+13\sqrt{2}\)

\(\sqrt{28-10\sqrt{3}}=\sqrt{25-2.5\sqrt{3}+3}=\sqrt{\left(5-\sqrt{3}\right)^2}=5-\sqrt{3}\)

NV
16 tháng 6 2019

\(\sqrt{\frac{9-4\sqrt{2}}{4}}=\frac{\sqrt{\left(2\sqrt{2}-1\right)^2}}{2}=\frac{2\sqrt{2}-1}{2}\)

\(\sqrt{\frac{129+16\sqrt{2}}{16}}=\sqrt{\frac{\left(8\sqrt{2}+1\right)^2}{16}}=\frac{8\sqrt{2}+1}{4}\)

\(\sqrt{3+2\sqrt{2}}=\sqrt{\left(\sqrt{2}+1\right)^2}=\sqrt{2}+1\)

\(\sqrt{\frac{289+4\sqrt{72}}{16}}=\frac{\sqrt{\left(12\sqrt{2}+1\right)^2}}{4}=\frac{12\sqrt{2}+1}{4}\)

\(\sqrt{8+2\sqrt{15}}=\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}=\sqrt{5}+\sqrt{3}\)

3 tháng 10 2021

\(a,\sqrt{8+2\sqrt{15}}-\sqrt{6+2\sqrt{5}}\\ =\sqrt{3}+\sqrt{5}-\left(\sqrt{5}+1\right)=\sqrt{3}-1\\ b,=3-2\sqrt{2}-\left(3\sqrt{2}+1\right)=2-5\sqrt{2}\\ c,=\sqrt{7}-1+\sqrt{7}+1=2\sqrt{7}\\ d,=\sqrt{11}+1-\left(\sqrt{11}-1\right)=2\\ e,=\sqrt{7}-\sqrt{3}-\left(\sqrt{7}-\sqrt{2}\right)=\sqrt{2}-\sqrt{3}\)

bạn giải chi tiết giúp mk đc k ạ

 

10 tháng 7 2017

thực hiện phép tính nha cám ơn m.ng

3 tháng 4 2020

GIÚP MK NHANH NHA