K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 2 2020

A+B=a+b-5+(-b-c+1)=a+b-5-b-c+1=a-c-4  (1)

C-D=b-c-4-(b-a)=b-c-4-b+a=a-c-4  (2)

từ (1) và (2) suy ra A+B=C-D

22 tháng 2 2020

Em cảm ơn cô

20 tháng 7 2015

a)a/b=c/d suy ra ad=bc suy ra ad+db=bc+bd suy ra d(a+b)=b(c+d) suy ra a+b/b=c+d/d

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{b}+1=\frac{c}{d}+1=\frac{a+b}{b}=\frac{c+d}{d}\)

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{b}-1=\frac{c}{d}-1=\frac{a-b}{b}=\frac{c-d}{d}\)

9 tháng 7 2015

\(A=\left(a-b\right)\left(a-c\right)\left(a-d\right)\left(b-c\right)\left(b-d\right)\left(c-d\right)\)

+Chứng minh chia hết cho 3

1 số bất kì khi chia cho 3 sẽ có 1 trong 3 số dư: 0; 1; 2
=> Trong 4 số a, b, c, d tồn tại ít nhất 2 số có cùng số dư khi chia cho 3 (cùng dư 0, hoặc 1, hoặc 2)
=> Hiệu 2 số đó chia hết cho 3 (chẳng hạn a và b cùng dư 2 khi chia cho 3 => a - b chia hết cho 3)
=> Tích "dài dài" chia hết cho 3

+Chứng minh chia hết cho 4:

+TH1: 4 số đều chẵn
=> Tất cả các nhân tử đều chẵn (số chẵn trừ số chẵn = số chẵn)
=> A chia hết cho 2.2.2.2.2.2 = 64
=> A chia hết cho 4.

+TH2: 3 số chẵn và 1 số lẻ (giả sử a, b, c chẵn và d lẻ).
=> (a-b); (a-c); (b-c) đều chẵn.
=> A chia hết cho 2.2.2 = 8.
=> A chia hết cho 4.

+TH3: 2 số chẵn và 2 số lẻ (giả sử a và b chẵn; c và  lẻ)
=> (a-b) và (c-d) đều chẵn (số lẻ trừ số lẻ = số chẵn)
=> A chia hết cho 2.2 = 4

TH4: 1 số chẵn và 3 số lẻ (giả sử a, b, c lẻ và d chẵn).
=> (a-b); (a-c); (b-c) đều chẵn. (lẻ trừ lẻ = chẵn)
=> A chia hết cho 2.2.2 = 8.
=> A chia hết cho 4.

+TH5: 4 số đều lẻ
=> Tất cả các nhân tử đều chẵn (lẻ trừ lẻ = chẵn)
=> A chia hết cho 2.2.2.2.2.2 = 64
=> A chia hết cho 4.

=> A luôn chia hết cho 4.

Vậy: A luôn chia hết cho cả 3 và 4.

18 tháng 3 2019

Ta có \(\frac{a}{a+b+c}\)\(\frac{a}{a+b+c+d}\)

       \(\frac{b}{b+c+a}\)\(\frac{b}{b+c+a+d}\)

        tương tự ....

suy ra cái đề > 1 dpcm

10 tháng 5 2020

ko biet thi dung lam nhe con