K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=6^2+8^2=100\)

hay BC=10(cm)

Vậy:BC=10cm

a: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)

b: ΔACB vuông tại A có AH là đường cao

nên AB^2=BH*BC

4 tháng 5 2021

cau co cau tra loi chx 

a: Sửa đề: Tính BC

\(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)

b: ΔABC vuông tại A 

mà AH là đường cao

nên AB^2=BH*BC

BH=6^2/10=3,6cm

CH=10-3,6=6,4cm

 

8 tháng 4 2016

a) sử dụng Py-ta-go

b) tam giác đồng dạng

c) t/c đường p.g 

8 tháng 4 2016

a) áp dụng định lý py-ta-go dối với ▲ABC vuông tại A ta có:

BC2=AB2+AC2

BC=10 cm

b)cm ▲HBA dồng dạng ▲ABC(g-g)

suy ra \(\frac{AB}{BC}=\frac{BH}{AB}\)

\(\Rightarrow AB^2=BH\cdot BC\)

thay số vào ta có : 62=BHx10

BH=3.6 cm

HC=BC-BH=10-3.6=6.4 cm

4 tháng 5 2021

cau co cau  tra loi chx

28 tháng 3 2021

e) \(AH\perp BC\)(giả thiết).

\(\Rightarrow\Delta HAB\)vuông tại H.

\(\Rightarrow S_{HAB}=\frac{AH.BH}{2}=4,8.\frac{30}{14}=\frac{144}{14}=\frac{72}{7}\left(cm^2\right)\)

Xét \(\Delta ABC\)có phân giác BD (giả thiết).

\(\Rightarrow\frac{AD}{CD}=\frac{AB}{BC}\)(tính chất).

\(\Rightarrow\frac{AD}{CD+AD}=\frac{AB}{BC+AB}\)(tính chất của tỉ lệ thức).

\(\Rightarrow\frac{AD}{AC}=\frac{AB}{BC+AB}\)

\(\Rightarrow\frac{AD}{8}=\frac{6}{10+6}=\frac{6}{16}=\frac{3}{8}\)(thay số).

\(\Rightarrow AD=\frac{3}{8}.8=3\left(cm\right)\)

Vì \(\Delta ABC\)vuông tại A (giả thiết).

\(\Rightarrow\widehat{CAB}=90^0\Rightarrow\widehat{DAB}=90^0\)

\(\Rightarrow\Delta ADB\)vuông tại A.

\(\Rightarrow S_{ADB}=\frac{AD.AB}{2}=\frac{3.6}{2}=9\left(cm^2\right)\)

Ta có: \(S_{ABC}=\frac{AB.AC}{2}\)(theo câu a))

\(\Rightarrow S_{ABC}=\frac{6.8}{2}=\frac{48}{2}=24\left(cm^2\right)\)

Lại có: \(S_{ABD}+S_{BCD}=S_{ABC}\)

\(\Rightarrow9+S_{BCD}=24\)(thay số).

\(\Rightarrow S_{BCD}=24-9=15\left(cm^2\right)\)

Vậy \(S_{HAB}=\frac{72}{7}cm^2;S_{BCD}=15cm^2\)

28 tháng 3 2021

A B C H E D I