K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC
AH chung

Do đó: ΔAHB=ΔAHC

b: Xét tứ giác AHCE có

D là trung điểm chung của AC và HE

\(\widehat{AHC}=90^0\)

Do đó: AHCE là hình chữ nhật

=>EC//AH

c: Xét ΔAHC có

CF,HD là trung tuyến

CF cắt HD tại Q

=>Q là trọng tâm

=>HQ=2/3HD=2/3*1/2*HE=1/3HE

=>HE=3HQ

a) Xét ΔABH vuông tại H và ΔACH vuông tại H có 

AB=AC(ΔBAC cân tại A)

AH chung

Do đó: ΔABH=ΔACH(Cạnh huyền-cạnh góc vuông)

b) Xét ΔAMD và ΔCMH có 

MA=MC(gt)

\(\widehat{AMD}=\widehat{CMH}\)(hai góc đối đỉnh)

MD=MH(gt)

Do đó: ΔAMD=ΔCMH(c-g-c)

Suy ra: AD=HC(Hai cạnh tương ứng)

c) Ta có: ΔAMD=ΔCMH(cmt)

nên \(\widehat{MAD}=\widehat{MCH}\)(hai góc tương ứng)

mà hai góc này là hai góc ở vị trí so le trong

nên AD//HC(Dấu hiệu nhận biết hai đường thẳng song song)

hay AD//HB

Xét tứ giác ABHD có 

AD//BH(cmt)

AD=BH(=HC)

Do đó: ABHD là hình bình hành(Dấu hiệu nhận biết hình bình hành)

Suy ra: AB//DH(Hai cạnh đối)

19 tháng 3 2022

a, Xét tg AHB và tg AHC, có: 

AB=AC(tg cân)

góc AHB= góc AHC(=90o)

AH chung.

=>tg AHB= tg AHC( ch-cgv)

=>BH=HC.

=>H là trung điểm của BC.

 

a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC

AH chung

Do đó: ΔAHB=ΔAHC

=>HB=HC

=>H là trung điểm của BC

b: Sửa đề: Trên tia đối của tia HA

Xét ΔABH vuông tại H và ΔDCH vuông tại H có

HA=HD

HB=HC

Do đó: ΔABH=ΔDCH

c: Sửa đề: Cm ΔACD cân

Ta có: ΔABH=ΔDCH

=>DC=AB

mà AB=AC

nên CA=CD

=>ΔCAD cân tại C

a: Xét ΔABH vuông tại H và ΔACH vuông tại H có

AB=AC
AH chung

Do đó: ΔABH=ΔACH

b: \(\widehat{ABC}=\dfrac{180^0-30^0}{2}=75^0\)

c: Xét tứ giác AHCE có

D là trung điểm của AC

D là trung điểm của HE

Do đó: AHCE là hình bình hành

Suy ra: AH//CE

29 tháng 5 2017

ĐỀ QUẬN BÌNH TÂN NĂM 2016 - 2017

a) Xét \(\Delta ABH\)và \(\Delta ACH\)ta có:

AH là cạnh chung

AB = AC ( \(\Delta ABC\)cân tại A)

BH = CH ( H là trung điểm của BC)

\(\Rightarrow\Delta ABH=\Delta ACH\left(c-c-c\right)\)

Xét \(\Delta ABC\)cân tại A ta có:

AH là đường trung tuyến ( H là trung điểm của BC)

\(\Rightarrow\)AH là đường cao của \(\Delta ABC\)

\(\Rightarrow AH⊥BC\)tại H.

b) Xét \(\Delta BDH\)vuông tại D và \(\Delta CEH\)vuông tại E ta có:

BH = CH ( H là trung điểm của BC)

\(\widehat{DBH}=\widehat{ECH}\)(\(\Delta ABC\)cân tại A)

\(\Rightarrow\Delta BDH=\Delta CEH\left(ch-gn\right)\)

\(\Rightarrow\)BD = CE ( 2 cạnh tương ứng)

c) Ta có:

AB = AC (\(\Delta ABC\)cân tại A)

BD = CE ( cmt)

\(\Rightarrow AB-BD=AC-CE\)

\(\Rightarrow AD=AE\)

\(\Rightarrow\Delta ADE\)cân tại A

\(\Rightarrow\widehat{ADE}=\frac{180^o-\widehat{DAE}}{2}\)

Mà \(\widehat{ABC}=\frac{180^o-\widehat{BAC}}{2}\)

Nên \(\widehat{ADE}=\widehat{ABC}\)

Mặt khác 2 góc này nằm ở vị trí đồng vị

\(\Rightarrow\)DE // BC.

d) Nối A với I.

Ta có: 

\(\hept{\begin{cases}HE=HM+ME\left(M\in HE\right)\\HM=EN\left(gt\right)\end{cases}}\)

\(\Rightarrow HE=EN+ME\)

\(\Rightarrow HE=MN\)

Xét \(\Delta AEN\)vuông tại E ta có:

\(\hept{\begin{cases}AN^2=AE^2+EN^2\left(Pitago\right)\\AE=AD\left(cmt\right)\\EN=HM\left(gt\right)\end{cases}}\)

\(\Rightarrow AN^2=AD^2+HM^2\)

\(\Rightarrow AN^2=AD^2+HI^2-MI^2\)

\(\Rightarrow AN^2=AD^2+HI^2-\left(NI^2-MN^2\right)\)

\(\Rightarrow AN^2=AD^2+HI^2-NI^2+HD^2\)

\(\Rightarrow AN^2=AD^2+HD^2+HI^2-NI^2\)

\(\Rightarrow AN^2=AH^2+HI^2-NI^2\)

\(\Rightarrow AN^2=AI^2-NI^2\)

\(\Rightarrow AI^2=AN^2+NI^2\)

\(\Rightarrow\Delta ANI\)vuông tại N ( Định lý Pitago đảo)

\(\Rightarrow IN⊥AN\)tại N.

a: Xét ΔABH vuông tại H và ΔACH vuông tại H có

AB=AC

AH chung

Do đó: ΔABH=ΔAHC

Suy ra: BH=CH

hay H là trung điểm của BC

b: Xét ΔABH vuông tại H và ΔDCH vuông tại H có

HB=HC

HA=HD

Do đó: ΔABH=ΔDCH

c: Ta có: ΔABH=ΔDCH

nên AB=DC

mà AB=AC

nên DC=AC

hay ΔACD cân tại C

a: Xét ΔABH và ΔACH có

AB=AC
\(\widehat{BAH}=\widehat{CAH}\)

AH chung

Do đó: ΔABH=ΔACH

b: Xét ΔACD có AC=AD

nên ΔACD cân tại A

c: Xét ΔDCB có

CA là đường trung tuyến

CA=DB/2

Do đó:ΔDCB vuông tại C

=>DC⊥BC

mà AH⊥BC

nên DC//AH

d: ta có: DC//AH

nên \(\widehat{DCB}=90^0\)

13 tháng 5 2022

a, Xét Δ ABD và Δ CED, có :

DB = DE (D là trung điểm của BE)

DA = DC (BD là đường trung tuyến của AC)

\(\widehat{ADB}=\widehat{CDE}\) (đối đỉnh)

=> Δ ABD = Δ CED (c.g.c)

13 tháng 5 2022

Mình cần câu B ạ, bạn giải hộ mình được không ạ?

 

25 tháng 2 2020

A M N B C F H D E I

Thấy cái ý △AMN cân với cái chứng minh BAC = 1/2 MAN cũng ko lên quan lắm. Tham khảo qua ạ tại câu b hơi có vấn đề :(

a) Xét △AHB và △AHC có:

AHB = AHC (= 90o)

AH: chung

AB = AC (△ABC cân)

=> △AHB = △AHC (ch-cgv)

b) Xét △ADM và △ADH có:

ADM = ADH (= 90o)

DM = DH (gt)

AD: chung

=> △ADM = △ADH (2cgv)

=> AM = AH (2 cạnh tương ứng) (1)

Xét △ANE và △AHE có:

AEH = AEN (= 90o)

EH = EN (gt)

AE: chung

=> △ANE = △AHE (2cgv)

=> AN = AH (hai cạnh tương ứng) (2)

Từ (1) và (2) => AM = AN => △AMN cân tại A

Ta có: MAN = MAB + BAH + HAC + CAN

Mà MAB = HAB, HAC = CAN (suy ra được từ các tam giác bằng nhau)

=> MAN = 2BAH + 2 HAC

=> MAN = 2BAC

=> BAC = 1/2MAN

c) Ta có: HAD = HAE (△AHB = △AHC)

Mà HAD = DAM, HAE = EAN

=> HAD + DAM = HAE + EAN

=> HAM = HAN

Gọi giao điểm AH và MN là F

Xét △AFM và △AFN có:

AF: chung

FAM = FAN (cmt)

AM = AN (cmt)

=> △AFM = △AFN (c.g.c)

=> AFM = AFN (2 góc tương ứng)

Mà AFM + AFN = 180o => AFM = AFN = 90o

=> AH vuông góc MN (1)

Gọi giao điểm của DE và AH là I

Xét △ADH và △AEH có:

ADH = AEH (= 90o)

AH: chung

HAD = HAE (△HAB = △HAC)

=> △ADH = △AEH (ch-gn)

=> AD = AE (2 cạnh tương ứng)

Xét △AID và △AIE có:

AI: chung

IAD = IAE (cmt)

AD = AE (cmt)

=> △AID = △AIE (c.g.c)

=> AID = AIE (2 góc tương ứng)

Mà AID + AIE = 180o => AID = AIE = 90o

=> AH vuông góc DE (2)

Từ (1) và (2) => MN // DE

25 tháng 2 2020

d) \(\Delta\)ABC cân tại A  có AH là đường cao

=> AH là đường trung tuyến

=> H là trung điểm BC 

=> BH = HC = BC : 2 = 3 ( cm )

\(\Delta\)ABH vuông tại H  => AB2 - BH2 = AH2 => AH = 4 cm

=> S ( \(\Delta\)ABH ) = \(\frac{1}{2}\)BH . AH =\(\frac{1}{2}\) HD . AB 

=> 3.4 = HD . 5 => HD = 2,4 cm

\(\Delta\)BDH vuông tại D => BD2 = BH2 - HD = 3,24 => BD = 1,8 cm