Phân tích đa thức thành nhân tửA=8abc+4(ab+bc+ca)+2(a+b+c)+1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(A=8abc+4\left(ab+bc+ca\right)+2\left(a+b+c\right)+1\)
\(A=\left(8abc+4ab\right)+\left(4bc+2b\right)+\left(4ca+2a\right)+\left(2c+1\right)\)
\(A=4ab\left(2c+1\right)+2b\left(2c+1\right)+2a\left(2c+1\right)+\left(2c+1\right)\)
\(A=\left(2c+1\right)\left(4ab+2a+2b+1\right)\)
\(A=\left(2c+1\right)\left[2a\left(2b+1\right)+\left(2b+1\right)\right]\)
\(A=\left(2a+1\right)\left(2b+1\right)\left(2c+1\right)\)
Ta có:\(A=8abc+4\left(ab+bc+ca\right)+2\left(a+b+c\right)+1\)
\(=8abc+4ab+4bc+4ca+2a+2b+2c+1\)
\(=\left(8abc+4ab\right)+\left(4bc+2b\right)+\left(4ca+2a\right)+\left(2c+1\right)\)
\(=4ab\left(2c+1\right)+2b\left(2c+1\right)+2a\left(2c+1\right)+\left(2c+1\right)\)
\(=\left(2c+1\right)\left(4ab+2b+2a+1\right)\)
\(=\left(2c+1\right)\left[2b\left(2a+1\right)+\left(2a+1\right)\right]\)
\(=\left(2c+1\right)\left(2b+1\right)\left(2a+1\right)\)
a: =(x+y)^3+z^3-3xy(x+y)-3xyz
\(=\left(x+y+z\right)\left[\left(x+y\right)^2-z\left(x+y\right)+z^2\right]-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2-3xy\right)\)
\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-xz-yz\right)\)
b: \(=\left(x+y+y-z\right)^3-3\left(x+y\right)\left(y-z\right)\left(x+y+y-z\right)+\left(z-x\right)^3\)
\(=\left(x-z\right)^3+\left(z-x\right)^3-3\left(x+y\right)\left(y-z\right)\left(x-z\right)\)
\(=-3\left(x+y\right)\left(y-z\right)\left(x-z\right)\)
c: \(=\left(x^2+x\right)^2+3\left(x^2+x\right)+2-12\)
\(=\left(x^2+x\right)^2+3\left(x^2+x\right)-10\)
=(x^2+x+5)(x^2+x-2)
=(x^2+x+5)(x+2)(x-1)
d: =b^2c+bc^2+ac^2-a^2c-a^2b-ab^2
=b^2c-b^2a+bc^2-a^2b+ac^2-a^2c
=b^2(c-a)+b(c^2-a^2)+ac(c-a)
=(c-a)(b^2+ac)+b(c-a)(c+a)
=(c-a)(b^2+ac+bc+ba)
=(c-a)[b^2+bc+ac+ab]
=(c-a)[b(b+c)+a(b+c)]
=(c-a)(b+c)(b+a)
a: Ta có: \(\left(a^2+b^2-5\right)^2-4\left(ab+2\right)^2\)
\(=\left(a^2+b^2-5-2ab-4\right)\left(a^2+b^2-5+2ab+4\right)\)
\(=\left[\left(a-b\right)^2-9\right]\cdot\left[\left(a+b\right)^2-1\right]\)
\(=\left(a-b-3\right)\left(a-b+3\right)\left(a+b-1\right)\left(a+b+1\right)\)
\(a,=x\left(2x-y\right)+\left(2x-y\right)=\left(x+1\right)\left(2x-y\right)\\ b,=\left(a+b\right)\left(c-2\right)\\ c,=x\left(x+4y\right)+2\left(x+4y\right)=\left(x+2\right)\left(x+4y\right)\\ d,=x\left(x+2y\right)+3\left(x+2y\right)=\left(x+3\right)\left(x+2y\right)\)
\(a,=4x^3\left(x+1\right)-x\left(x+1\right)=x\left(4x^2-1\right)\left(x+1\right)\\ =x\left(2x-1\right)\left(2x+1\right)\left(x+1\right)\\ b,=\left(a-1\right)^2-\left(b-c\right)^2\\ =\left(a-1-b+c\right)\left(a-1+b-c\right)\\ c,=\left(x^2-9x+14\right)\left(x^2-9x+20\right)-72\\ =\left(x^2-9x+17\right)^2-9-72\\ =\left(x^2-9x+17\right)^2-81=\left(x^2-9x+8\right)\left(x^2-9x+26\right)\\ =\left(x-1\right)\left(x-8\right)\left(x^2-9x+26\right)\)
A=8abc+4(ab+bc+ca)+2(a+b+c)+1�=8���+4(��+��+��)+2(�+�+�)+1
A = 8abc + 4ab + 4bc + 4ca + 2a + 2b + 2c + 1
A=(8abc+4ab)+(4bc+2b)+(4ca+2a)+(2c+1)�=(8���+4��)+(4��+2�)+(4��+2�)+(2�+1)
A=4ab(2c+1)+2b(2c+1)+2a(2c+1)+(2c+1)�=4��(2�+1)+2�(2�+1)+2�(2�+1)+(2�+1)
A=(2c+1)(4ab+2a+2b+1)�=(2�+1)(4��+2�+2�+1)
A=(2c+1)[2a(2b+1)+(2b+1)]�=(2�+1)[2�(2�+1)+(2�+1)]
A=(2a+1)(2b+1)(2c+1)