Cho ΔABC có góc A = \(50^o\), AB = 4cm, AC = 6cm. Tính diện tích tam giác ABC.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác ADME có
\(\widehat{ADM}=\widehat{AEM}=\widehat{DAE}=90^0\)
=>ADME là hình chữ nhật
b: Diện tích tam giác ABC là:
\(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC=\dfrac{1}{2}\cdot4\cdot6=2\cdot6=12\left(cm^2\right)\)
Xét ΔABC có
M là trung điểm của BC
MD//AC
Do đó: D là trung điểm của AB
=>\(AD=DB=\dfrac{AB}{2}=2\left(cm\right)\)
Xét ΔABC có
M là trung điểm của BC
ME//AB
Do đó: E là trung điểm của AC
=>\(AE=EC=\dfrac{AC}{2}=3\left(cm\right)\)
Diện tích hình chữ nhật ADME là:
\(S_{ADME}=AD\cdot AE=2\cdot3=6\left(cm^2\right)\)
c: Để hình chữ nhật ADME trở thành hình vuông thì AD=AE
mà AD=AB/2; AE=AC/2
nên AB=AC
Ta có \(\dfrac{S_{AMB}}{S_{AMC}}=\left(\dfrac{AB}{AC}\right)^2=\dfrac{16}{36}=\dfrac{4}{9}\)
a/ Áp dụng định lý Pytago vào \(\Delta ABC\) vuông tại \(A\):
\(\to BC=\sqrt{AB^2+AC^2}=\sqrt{6^2+8^2}=\sqrt{100}=10\) (cm)
b/ Xét \(\Delta BAC\) và \(\Delta BHA\):
\(\widehat{B}:chung\)
\(\widehat{BAC}=\widehat{BHA}(=90^\circ)\)
\(\to \Delta BAC\backsim \Delta BHA\) (g-g)
c/ \(AH\cdot BC=AC\cdot AB\)
\(\to AH=\dfrac{AC\cdot AB}{BC}=\dfrac{6\cdot 8}{10}=4,8\) (cm)
Áp dụng định lý Pytago vào \(\Delta AHB\) vuông tại \(H\)
\(\to BH=\sqrt{AB^2-AH^2}=\sqrt{6^2-4,8^2}=\sqrt{12,96}=3,6\) (cm)
\(S_{\Delta AHB}=\dfrac{1}{2}\cdot AH\cdot BH=\dfrac{1}{2}\cdot 4,8\cdot 3,6=8,64(cm^2)\)
Thiếu điểm D nên không tính được diện tích tam giác BDC
Để tính diện tích tam giác ABC, chúng ta có thể sử dụng công thức diện tích tam giác:
Diện tích tam giác ABC = 1/2 * AB * AC * sin(A)
Với góc A = 50°50' và AB = 4cm, AC = 6cm, chúng ta có thể tính được diện tích tam giác ABC bằng cách thay các giá trị vào công thức trên.
\(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC\cdot sinA=\dfrac{1}{2}\cdot4\cdot6\cdot sin50\simeq9,19\left(cm^2\right)\)