so sánh A= \(\dfrac{2003^{2003}+1}{2003^{2004}+1}\)
B=
\(\dfrac{2003^{2002}+1}{2003^{2003}+1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có:
(tạm trình bày vậy vì phần đánh văn bản còn yếu, bạn hểu và trình bày đúng lại giúp mình nhé)
A:
20032003+1=20032002.2003+1=20032002+1
20032004+1=20032002.2003.2003+1=20032002.2003+1(loại số 2003 thứ hai của cả mẫu số và tử số)
B:
20032002+1=20032002+1
20032003+1=20032002.2003+1
Suy ra: A=B
\(A=\dfrac{10^{2004}+1}{10^{2003}+1}>\dfrac{10^{2004}+1+9}{10^{2003}+1+9}=\dfrac{10^{2004}+10}{10^{2003}+10}.\\ =\dfrac{10\left(10^{2003}+1\right)}{10\left(10^{2002}+1\right)}=\dfrac{10^{2003}+1}{10^{2002}+1}=B.\\ \Rightarrow A>B.\)
\(A=\frac{2003^{2003}+1}{2003^{2004}+1}< \frac{2003^{2003}+1+2002}{2003^{2004}+1+2002}\)
\(=\frac{2003^{2003}+2003}{2003^{2004}+2003}=\frac{2003\left(2003^{2002}+1\right)}{2003\left(2003^{2003}+1\right)}=\frac{2003^{2002}+1}{2003^{2003}+1}=B\)
\(\Rightarrow A< B\)
Ta có:
N=\(\dfrac{2003+2004}{2004+2005}\)=\(\dfrac{2003}{2004+2005}\)+\(\dfrac{2004}{2004+2005}\)
Ta thấy:
\(\dfrac{2003}{2004+2005}\)<\(\dfrac{2003}{2004}\)(1)
\(\dfrac{2004}{2004+2005}\)<\(\dfrac{2004}{2005}\)(2)
Từ (1) và (2) --> M=\(\dfrac{2003}{2004}\)+\(\dfrac{2004}{2005}\)>\(\dfrac{2003}{2004+2005}\)+\(\dfrac{2004}{2004+2005}\)=N
Vậy M>N
a) Ta có: \(1-\frac{2002}{2003}=\frac{1}{2003}\)
\(1-\frac{2003}{2004}=\frac{1}{2004}\)
Vì \(\frac{1}{2003}>\frac{1}{2004}\)
\(\Rightarrow\frac{2002}{2003}>\frac{2003}{2004}\)
b) Ta có: \(\frac{-2005}{-2004}=\frac{2005}{2004}>1\)
\(\frac{-2002}{2003}
Ta có: \(2003^{2003}+1=2003^{2002+1}+1và2003^{2004}+1=2003^{2003+1}+1\)
\(\Rightarrow A>B\)
A > B