cho x=a/b y=c/d z=a+c/b+d. (x,y,z thuoc Z)biet y>x CmR x<z<y
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Z = a+c/2 :b+d/2 =a+c/2 ·2/b+d =a+c/b+d
X =a/b = a(b+d)/b(b+d) =ab+ad/b2+bd
Z= a+c/b+d =(a+c).b/(b+d).b =ab+ac/b2+bd
(+) Nếu a dương ; d< c => ad < ac => ab +ad < ab +ac => X < Z
(+) Nếu a âm ; d< c => ad > ac => ab + ad > ab + ac => X>Z
(+) nếu a dương ; d > c => ad > ac => ab + ad > ab + ac => X > Z
(+) ..................................... ........................................... Z >X
ta có:\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{a+b+c}{b+c+d}\)
tích của 3 tỉ số đã cho là \(\left(\frac{a+b+c}{b+c+d}\right)^3\) ,mặt khác tich đó cũng bằng \(\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\frac{a.b.c}{b.c.d}=\frac{a}{d}\)
vậy \(\left(\frac{a+b+c}{b+c+d}\right)^3=\frac{a}{d}\) (đpcm)
**** đi
b/ \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}\)
\(\Rightarrow\left(\dfrac{a}{b}\right)^3=\dfrac{a}{d}\left(1\right)\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{a+b+c}{b+c+d}\)
=> \(\left(\dfrac{a}{b}\right)^3=\left(\dfrac{a+b+c}{c+d+b}\right)^3\) (2)Từ (1) và (2)=>đpcm
Ta có: \(\frac{a}{b}< \frac{c}{d}\)(vì x<y)
\(\Rightarrow\)ad < bc (nhân chéo) (1)
Xét tích: a(b+d) = ab. ad (2)
b(a+c) = ab . bc (3)
Từ (1),(2),(3) \(\Rightarrow\)a(b+d) < b(a+c)
\(\Rightarrow\)\(\frac{a}{b}< \frac{a+c}{b+d}\)(*)
Xét tích: c(b+d) = bc .cd (4)
d(a+c) = ad .cd (5)
Từ (1), (4), (5) \(\Rightarrow\)d(a+c) <c(b+d)
\(\Rightarrow\)\(\frac{a+c}{b+d}< \frac{c}{d}\)(**)
Từ (*) và (**) suy ra: \(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)
Hay : \(x< z< y\)(đpcm)