cho a^3+b^3+c^3=3abc=21 tính a(b^2+c^2)+b(c^2+a^2)+c(a^2+b^2)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\dfrac{a^3+c^3+3ac\left(a+c\right)-b^3-3ac\left(a+c\right)+3abc}{\left(a+b\right)^2+\left(b+c\right)^2+\left(c-a\right)^2}\)
\(=\dfrac{\left(a+c\right)^3-b^3-3ac\left(a+c-b\right)}{\left(a+b\right)^2+\left(b+c\right)^2+\left(c-a\right)^2}\)
\(=\dfrac{\left(a+c-b\right)\left[\left(a+c\right)^2+b\left(a+c\right)+b^2\right]-3ac\left(a+c-b\right)}{\left(a+b\right)^2+\left(b+c\right)^2+\left(c-a\right)^2}\)
\(=\dfrac{\left(a+c-b\right)\left(a^2+b^2+c^2+ab+bc-ac\right)}{\left(a+b\right)^2+\left(b+c\right)^2+\left(c-a\right)^2}\)
\(=\dfrac{-2\left(2a^2+2b^2+2c^2+2ab+2bc-2ca\right)}{\left(a+b\right)^2+\left(b+c\right)^2+\left(c-a\right)^2}\)
\(=\dfrac{-2\left[\left(a+b\right)^2+\left(b+c\right)^2+\left(c-a\right)^2\right]}{\left(a+b\right)^2+\left(b+c\right)^2+\left(c-a\right)^2}=-2\)
Ta có: a3+b3+c3=3abc
<=> (a+b+c)(a2+b2+c2-ab-bc-ca)=0
<=> (a+b+c)(2a2+2b2+2c2-2ab-2bc-2ca)=0
<=> (a+b+c)[(a-b)2+(b-c)2+(c-a)2 ] = 0
<=> \(\orbr{\begin{cases}a+b+c=0\\\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\end{cases}}\)
<=> \(\orbr{\begin{cases}a+b+c=0\\a=b=c\end{cases}}\)
Vì a,b,c phân biệt nên a+b+c=0 => \(\hept{\begin{cases}a=-\left(b+c\right)\\b=-\left(c+a\right)\\c=-\left(a+b\right)\end{cases}}\)(*)
Lại có: \(M=\frac{ab^2}{a^2+b^2-c^2}+\frac{bc^2}{b^2+c^2-a^2}+\frac{ca^2}{c^2+a^2-b^2}\)
Thay (*) vào M ta được:
\(M=\frac{-\left(b+c\right)b^2}{\left(b+c\right)^2+\left(b+c\right)\left(b-c\right)}+\frac{-\left(c+a\right)c^2}{\left(c+a\right)^2+\left(c+a\right)\left(c-a\right)}+\frac{-\left(a+b\right)a^2}{\left(a+b\right)^2+\left(a+b\right)\left(a-b\right)}\)
\(=\frac{-\left(b+c\right)b^2}{\left(b+c\right)\left(b+c+b-c\right)}+\frac{-\left(c+a\right)c^2}{\left(c+a\right)\left(c+a+c-a\right)}+\frac{-\left(a+b\right)a^2}{\left(a+b\right)\left(a+b+a-b\right)}\)
\(=\frac{-\left(b+c\right)b^2}{2b\left(b+c\right)}+\frac{-\left(c+a\right)c^2}{2c\left(c+a\right)}+\frac{-\left(a+b\right)a^2}{2a\left(a+b\right)}\)
\(=\frac{-b}{2}-\frac{c}{2}-\frac{a}{2}=\frac{-\left(b+c+a\right)}{2}\)
Mà a+b+c=0
=> M=0
Vậy M=0
\(a^3+b^3+c^3=3abc\)
\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)
\(\Leftrightarrow\frac{1}{2}\left(a+b+c\right)\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]=0\)
Mà \(a+b+c\ne0\left(gt\right)\)
\(\Leftrightarrow a=b=c\)
Do đó:
\(A=\frac{a^2+2b^2+6c^2}{\left(a+b+c\right)^2}+2015=\frac{a^2+2a^2+6c^2}{\left(a+a+a\right)^2}+2015=\frac{9a^2}{9a^2}+2015=1+2015=2016\)
Ta có: a3 + b3 + c3 = 3abc
<=> (a + b)(a2 - ab + b2) + c3 - 3abc = 0
<=> (a + b)3 - 3ab(a + b) + c3 - 3abc = 0
<=> (a + b + c)[(a + b)2 - (a + b)c + c2) - 3ab(a + b + c) = 0
<=> (a + b + c)(a2 + 2ab + b2 - ac - bc + c2 - 3ab) = 0
<=> (a + b + c)(a2 + b2 + c2 - ab - ac - bc) = 0
<=> \(\orbr{\begin{cases}a+b+c=0\left(loại\right)\\a^2+b^2+c^2-ab-ac-bc=0\end{cases}}\)
<=> 2a2 + 2b2 + 2c2 - 2ab - 2ac - 2bc = 0
<= > (a2 - 2ab + b2) + (b2 - 2bc + c2) + (c2 - 2ac + a2) = 0
<=> (a - b)2 + (b - c)2 + (c - a)2 = 0
<=> \(\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}}\)<=> a = b = c
Khi đó: B = \(\frac{a^2+a^2+a^2}{\left(a+a+a\right)^2}=\frac{3a^2}{\left(3a\right)^2}=\frac{3a^2}{9a^2}=\frac{1}{3}\)
ta có a3+b3+c3=3abc <=> a3+b3+c3-3abc=0
<=> (a+b)3-3ab(a+b)+c3-3abc=0
<=> (a+b+c)3-3(a+b)c(a+b+c)-3ab(a+b+c)=0
<=> (a+b+c)(a2+b2+c2-ab-bc-ca)=0
<=> a2+b2+c2-ab-bc-ca=0 (vì a+b+c=0)
<=> (a-b)2+(b-c)2+(c-a)2=0
<=> a=b=c
khi đó \(B=\frac{a^2+b^2+c^2}{\left(a+b+c\right)^2}=\frac{a^2+a^2+a^2}{\left(a+a+a\right)^2}=\frac{3a^2}{\left(3a\right)^2}=\frac{1}{3}\)
tham khảo nhé
vào trang cá nhân của mình đi mà, mình có trả lời r đó