Cho 3 số a,b,c khác nhau và khác 1 biết
\(\frac{a}{b+c}=\frac{c}{a+b}=\frac{c}{a+c}\)
Tính gtri biểu thức
\(P=\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}\Leftrightarrow\)\(\frac{a}{b+c}+1=\frac{b}{a+c}+1=\frac{c}{a+b}+1\Leftrightarrow\)\(\frac{a+b+c}{b+c}=\frac{b+a+c}{a+c}=\frac{c+a+b}{a+b}\Leftrightarrow b+c=a+c=a+b\Leftrightarrow a=b=c\)
\(\Rightarrow P=\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}=\frac{a+a}{a}+\frac{a+a}{a}+\frac{a+a}{a}=2+2+2=6\)
a)\(\left(x-\frac{1}{2}\right)^{2016},\left|\frac{3}{4}-y\right|\ge0\)
\(\left(x-\frac{1}{2}\right)^{2016}+\left|\frac{3}{4}-y\right|=0\)
\(\Rightarrow\orbr{\begin{cases}\left(x-\frac{1}{2}\right)^{2016}=0\\\left|\frac{3}{4}-y\right|=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x-\frac{1}{2}=0\\\frac{3}{4}-y=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{1}{2}\\y=\frac{3}{4}\end{cases}}\)
b)\(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}\)
\(\Rightarrow\frac{b+c}{a}=\frac{a+c}{b}=\frac{a+b}{c}\)
\(\Rightarrow\frac{b+c}{a}-\frac{a+c}{b}-\frac{a+b}{c}=0\)
a) Ta có : \(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}\Leftrightarrow\frac{a+b}{c}+1=\frac{b+c}{a}+1=\frac{c+a}{b}+1\)
\(\Rightarrow\frac{a+b+c}{a}=\frac{a+b+c}{b}=\frac{a+b+c}{c}\)
\(\Rightarrow P=\left(1+1\right)\left(1+1\right)\left(1+1\right)=8\)
b) Đề bài sai ^^
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}=\frac{a+b+c}{2a+2b+2c}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)
\(\Rightarrow\hept{\begin{cases}2a=b+c\\2b=a+c\\2c=a+b\end{cases}}\)
Vậy \(P=\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}=\frac{2a+2b+2c}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+b}=2\)
bghvuyhbjb
nvtgkhihnoi
jhyubiuy7ikl
jhutgiuhyi8f
235123
5623623
\(\text{Áp dụng tính chất của dãy tỉ số bằng nhau ta có:}\)
\(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}=\frac{a+b+c}{b+c+a+c+a+b}=\frac{a+b+c}{2a+2b+2c}=\frac{a+b+c}{2.\left(a+b+c\right)}=\frac{1}{2}\)
\(\text{Suy ra: }\frac{a}{b+c}=\frac{1}{2}\Rightarrow b+c=\frac{a}{\frac{1}{2}}=2a\)
\(\frac{b}{a+c}\Rightarrow\frac{1}{2}\Rightarrow a+c=\frac{b}{\frac{1}{2}}=2b\)
\(\frac{c}{a+b}=\frac{1}{2}\Rightarrow a+b=\frac{c}{\frac{1}{2}}=2c\)
\(\Rightarrow\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}=\frac{2a}{a}+\frac{2b}{b}+\frac{2c}{c}=2+2+2=6\)
xét a + b + c = 0 khi đó a + b = -c ; b + c = -a ; a + c = -b
Ta có : \(A=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=\frac{\left(-a\right)\left(-b\right)\left(-c\right)}{abc}=-1\)
xét a + b + c \(\ne\)0 . thì \(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)
\(\Rightarrow a+b=2c;b+c=2a\)\(\Rightarrow a-c=2\left(c-a\right)\)\(\Rightarrow a=c\)( loại vì a khác c )
Vậy A = -1
Trường hợp 1: a+b+c \(\ne0\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}=\frac{a+b+c}{b+c+a+c+a+b}=\frac{a+b+c}{2\left[a+b+c\right]}=\frac{1}{2}\)
\(\Rightarrow\hept{\begin{cases}\frac{a}{b+c}=\frac{1}{2}\Leftrightarrow\frac{b+c}{a}=2\\\frac{b}{a+c}=\frac{1}{2}\Leftrightarrow\frac{a+c}{b}=2\\\frac{c}{a+b}=\frac{1}{2}\Leftrightarrow\frac{a+b}{c}=2\end{cases}\Rightarrow}\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}=2+2+2=6\)
Trường hợp 2: a + b + c = 0
\(a+b+c=0\Rightarrow\hept{\begin{cases}b+c=-a\\a+c=-b\\a+b=-c\end{cases}}\)
\(\Rightarrow\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}=-\frac{a}{a}+-\frac{b}{b}+-\frac{c}{c}=-1+\left[-1\right]+\left[-1\right]=-3\)
Ta có :
\(\frac{a}{b+c}=\frac{c}{a+b}=\frac{b}{a+c}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)
\(\Rightarrow\hept{\begin{cases}2a=b+c\\2c=a+b\\2b=a+c\end{cases}\Rightarrow\hept{\begin{cases}3a=a+b+c\\3c=a+b+c\\3b=a+b+c\end{cases}\Rightarrow}a=b=c}\)
Thay a=b=c vào P :
\(P=\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}=\frac{a+a}{a}+\frac{a+a}{a}+\frac{a+a}{a}=6\)