K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 7 2017

Tournament of the Towns, 1993 :3

Cho x là no pt, by C-S:

\(a^2+b^2\ge\frac{\left(x^4+2x^2+1\right)^2}{x^2+x^6}\ge8\)

\(\Leftrightarrow\left(x^2-1\right)^4\ge0\) 

từ đây suy ra nghiệm :3

3 tháng 7 2017

à sorry mk gửi nhầm câu hỏi ==" :v

29 tháng 10 2017

Ta có :  1/x²+1 + 1/y²+1 + 1/z²+1 >=3/2 <=> \(\frac{1}{x^2+1}\ge\frac{1}{2}\)

                                                                      \(\frac{1}{y^2+1}\ge\frac{1}{2}\)

                                                                       \(\frac{1}{z^2+1}\ge\frac{1}{2}\)
Mà \(\frac{1}{x^2+1}\ge\frac{1}{2}\Leftrightarrow1.2\ge x^2+1\Leftrightarrow x^2\le1\)

Mà x,y,z > 0 và xyz=1 => 0 < x,y,z < 1  => x2 < 1 
tương tự vs y và z nhé 

(x+y+z)^2=x^2+y^2+z^2

=>2(xy+yz+xz)=0

=>xy+xz+yz=0

=>xy/xyz+xz/xyz+yz/xyz=0

=>1/x+1/y+1/z=0

17 tháng 3 2017

Let \(\left(\dfrac{1}{x};\dfrac{1}{y};\dfrac{1}{z}\right)=\left(a;b;c\right)\) we need prove:

\(\left\{{}\begin{matrix}a+b+c=1\\a^4+b^4+c^4\ge abc\\a,b,c\ne0\end{matrix}\right.\)

By AM-GM we have: \(\left\{{}\begin{matrix}a^4+b^4\ge2\sqrt{a^4b^4}=2a^2b^2\\b^4+c^4\ge2\sqrt{b^4c^4}=2b^2c^2\\c^4+a^4\ge2\sqrt{c^4a^4}=2c^2a^2\end{matrix}\right.\)

\(\Rightarrow a^4+b^4+c^4\ge a^2b^2+b^2c^2+c^2a^2\left(1\right)\)

By AM-GM we have:

\(\left\{{}\begin{matrix}a^2b^2+b^2c^2=b^2\left(a^2+c^2\right)\ge b^2\cdot2\sqrt{a^2c^2}=2b^2ac\\b^2c^2+c^2a^2=c^2\left(b^2+a^2\right)\ge c^2\cdot2\sqrt{b^2a^2}=2c^2ab\\c^2a^2+a^2b^2=a^2\left(b^2+c^2\right)\ge a^2\cdot2\sqrt{b^2c^2}=2a^2bc\end{matrix}\right.\)

\(\Rightarrow a^2b^2+b^2c^2+c^2a^2\ge b^2ac+c^2ab+a^2bc\)

\(=abc\left(a+b+c\right)=abc\left(a+b+c=1\right)\left(2\right)\)

From \((1);(2)\) we are done !!

28 tháng 3 2018

where are you from?

 

29 tháng 10 2017

kt lai d bai fi

1\x.x +1 hay 1\(x.x +1) ha ban

31 tháng 10 2017

1/(x²+1)

6 tháng 4 2019

Với x ; y > 0 , cần c/m : \(x^3+y^3\ge xy\left(x+y\right)\)

Ta có : \(x^3+y^3-xy\left(x+y\right)=\left(x+y\right)\left(x^2-xy+y^2-xy\right)=\left(x+y\right)\left(x-y\right)^2\ge0\)

( điều này luôn đúng với mọi x ; y > 0 )

=> BĐT được c/m

Áp dụng vào bài toán , ta có :

\(\frac{1}{x^3+y^3+xyz}+\frac{1}{y^3+z^3+xyz}+\frac{1}{x^3+z^3+xyz}\le\frac{1}{xy\left(x+y\right)+xyz}+\frac{1}{yz\left(y+z\right)+xyz}+\frac{1}{xz\left(x+z\right)+xyz}=\frac{1}{xy\left(x+y+z\right)}+\frac{1}{yz\left(x+y+z\right)}+\frac{1}{xz\left(x+y+z\right)}=\frac{x+y+z}{xyz\left(x+y+z\right)}=\frac{1}{xyz}\)

Dấu " = " xảy ra \(\Leftrightarrow x=y=z;x,y,z>0\)

8 tháng 4 2017

Ta có:

\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge\dfrac{\left(1+1+1\right)^2}{z+y+z}=9=\dfrac{18}{2}>\dfrac{18}{xyz+2}\)

7 tháng 4 2017

*)Cách cho THCS Yahoo Hỏi & Đáp

*)Cách cho THPT

Áp dụng C-S dạng Engel \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{\left(1+1+1\right)^2}{x+y+z}=\frac{9}{3\sqrt[3]{xyz}}=\frac{3}{\sqrt[3]{xyz}}\)

Vậy chứng minh \(\frac{3}{\sqrt[3]{xyz}}>\frac{18}{xyz+2}\Leftrightarrow xyz-6\sqrt[3]{xyz}+2>0\)

Đặt \(t=\sqrt[3]{xyz}\le\frac{x+y+z}{3}=\frac{1}{3}\Rightarrow0< t\le\frac{1}{3}\)

Hàm số \(f\left(t\right)=t^3-6t+2\) nghịch biến trên (\(0;\frac{1}{3}\)]

\(f\left(t\right)\ge f\left(\frac{1}{3}\right)=\frac{1}{27}>0\) (ĐPCM)

8 tháng 4 2017

Thắng bị ngược dấu ngay dòng dùng schwarz rồi kìa