Tính nhanh
\(\frac{198.198+99}{199.198-99}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phân tích mẫu ta có
99/1 + 98/2 +...+1/99 = (98/2 + 1) + (97/3 + 1) +...+(1/99 + 1) +99/1 - 99
( cộng 1 vào mỗi phân số trừ 99/1 do đó phải trừ đi 99 để vẵn được đẳng thức đó)
= 100/2 +100/3 +...+100/99 = 100. (1/2 +1/3 +...+1/99)
Do đó B = [100. (1/2 +1/3 +...+1/99)]/(1/2 +1/3 +..1/99) =100
Phân tích mẫu ta có
99/1 + 98/2 +...+1/99 = (98/2 + 1) + (97/3 + 1) +...+(1/99 + 1) +99/1 - 99
( cộng 1 vào mỗi phân số trừ 99/1 do đó phải trừ đi 99 để vẵn được đẳng thức đó)
= 100/2 +100/3 +...+100/99 = 100. (1/2 +1/3 +...+1/99)
Do đó B = [100. (1/2 +1/3 +...+1/99)]/(1/2 +1/3 +..1/99) =100
A=(2/3+3/4+...+99/100)x(1/2+2/3+3/4+...+98/99)-(1/2+2/3+...+99/100)x(2/3+3/4+4/5+...98/99)
ta cho nó dài hơn như sau
A=(2/3+3/4+4/5+5/6+....+98/99+99/100)
ta thấy các mẫu số và tử số giống nhau nên chệt tiêu các số
2:3:4:5...99 vậy ta còn các số 2/100
ta làm vậy với(1/2+2/3+3/4+.....+98/99) thi con 1/99
làm vậy với câu (1/2+2/3+...+99/100) thì ra la 1/100
vậy với (2/3+3/4+...+98/99) ra 2/99
xùy ra ta có 2/100.1/99-1/100.2/99=1/50x1/99-1/100x2/99=tự tinh nhe mình ngủ đây
\(\frac{1}{99}-\frac{1}{99.98}-\frac{1}{98.97}-....-\frac{1}{3.2}\)
=\(\frac{1}{99}-\left(\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{98.99}\right)\)
=\(\frac{1}{99}-\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}\right)\)
=\(\frac{1}{99}-\left(\frac{1}{2}-\frac{1}{99}\right)\)
=\(\frac{1}{99}-\frac{97}{198}\)
=\(\frac{-95}{198}\)
mk nghĩ thế này: xét k E N* ta có:
(100-k)2 - (100-k).100+5000
= 1002 - 2.100.k +k2 - 1002 + 100k+ 5000
= k2 - 100k + 5000
lần lượt thay k = 1;2;3;...;99 ta có
12 - 100+ 5000 = 992 - 9900+ 5000
22 - 200+ 5000 = 982 - 9800+ 500
...
992 - 9900+ 5000 = 12 - 100 + 5000
ta có: 2A = \(\frac{1^2+99^2}{1^2-100+5000}+\frac{2^2+98^2}{2^2-200+5000}+...+\frac{99^2+1^2}{99^2-9900+5000}\)
mặt khác k2 + (100-k)2 = k3 + 1002 - 2.100k+ k2 = 2(k2 - 100k + 5000)
do đó \(\frac{k^2+\left(100-k\right)^2}{k^2-100k+5000}=2\)
=> 2A = 2+2+2+...+2 ( có 99 số hạng là 2)
do đó A= \(\frac{2.99}{2}=99\)
duyệt đi
Đặt \(A=\frac{99}{1}+\frac{98}{2}+\frac{97}{3}+...+\frac{1}{99}\), ta có:
\(A=\frac{99}{1}+\frac{98}{2}+\frac{97}{3}+...+\frac{1}{99}=\frac{100-1}{1}+\frac{100-2}{2}+\frac{100-3}{3}+...+\frac{100-99}{99}\)
\(=100-1+\frac{100}{2}-1+\frac{100}{3}-1+...+\frac{100}{99}-1\)
\(=100+\left(\frac{100}{2}+\frac{100}{3}+...+\frac{100}{99}\right)-\left(1+1+1+...+1\right)\)
\(=100+\left(\frac{100}{2}+\frac{100}{3}+...+\frac{100}{99}\right)-99\)
\(=1+100\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}\right)\)
\(A=100\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}+\frac{1}{100}\right)\)
Do đó, \(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}=\frac{1}{100}.A\)
Vậy, \(B=\frac{\frac{1}{100}.A}{A}=\frac{1}{100}\)
Từ 1 đến 100 có Số số hạng là :
( 100 -1 ) : 1 + 1 = 100 ( số )
=> TỪ 1/1 -> 100/100 có 100 số
TA có 1/1 + 2/2 + 3/3 + ... + 99/99 + 100/100
= 1 + 1 + 1 + ... + 1
=> có 100 số 1
= 100 x 1 = 100
Các bạn t i ck mk nếu đúng nha !
\(\left(\frac{99^9}{11^9}-\frac{99^{99}}{11^{99}}-\frac{99^{999}}{11^{999}}\right)\left(\frac{1}{5}-\frac{1}{7}-\frac{2}{35}\right)\)
\(=\left(\frac{99^9}{11^9}-\frac{99^{99}}{11^{99}}-\frac{99^{999}}{11^{999}}\right)\left(\frac{7}{35}-\frac{5}{35}-\frac{2}{35}\right)\)
\(=\left(\frac{99^9}{11^9}-\frac{99^{99}}{11^{99}}-\frac{99^{999}}{11^{999}}\right).0\)
\(=0\)
Ta có :\(\frac{198.198+99}{199.198-99}\)
=\(\frac{198.198+99}{198.198+198-99}\)
=\(\frac{198.198+99}{198.198+99}\)
= 1