Cho tứ giác ABCD. Y, J theo thứ tự là trung điểm của AC và BD.
C/m: AC+BD+2YJ < AB+BC+CD+AD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta co:IA =IB(gt) ; HA =HC(gt)
Suy ra:HI la` đg tb của tam giac ABC
Suy ra:IH =1/2BC ;IH//BC (1)
Trong tam giac BDC co:KD =KB(gt) ;JD =JC(gt)
Suy ra :KJ la đg tb cu`a tam giac BDC
Suy ra :KJ =1/2BC ;KJ//BC (2)
Tu (1) va (2) suy ra :KJ = IH ;KJ // IH
Suy ra :tu giac KIHJ la hinh binh hanh(2 canh doi song song va bang nhau)(*)
Trong tam giac ADC co:HA =HC(gt) ;JD = JC(gt)
Suy ra :HJ la đg tb của tam giac ADC
Suy ra :HJ = 1/2AD
Mà AD =BC(gt) ; HI = 1/2BC(c/m tren)
Suy ra :HJ = HI (**)
Tu (*) va (**) suy ra tu giac KIHJ la hinh thoi (hbh co 2 canh ke bang nhau)
Suy ra :IJ vuong goc voi KH
Kẻ đường chéo MP và NQ
Trong △ MNP ta có:
X là trung điểm của MN
Y là trung điểm của NP
nên XY là đường trung bình của △ MNP
⇒ XY // MP và XY = 1/2 MP (tính chất đường trung bình của tam giác) (3)
Trong △ QMP ta có:
T là trung điểm của QM
Z là trung điểm của QP
nên TZ là đường trung bình của △ QMP
⇒ TZ // MP và TZ = 1/2 MP (tính chất đường trung bình của tam giác) (4)
Từ (3) và (4) suy ra: XY // TZ và XY = TZ nên tứ giác XYZT là hình bình hành.
Trong △ MNQ ta có XT là đường trung bình
⇒ XT = 1/2 QN (tính chất đường trung bình của tam giác)
Tứ giác MNPQ là hình chữ nhật ⇒ MP = NQ
Suy ra: XT = XY. Vậy tứ giác XYZT là hình thoi
S X Y Z T = 1/2 XZ. TY
mà XZ = MQ = 1/2 BD = 1/2. 8 = 4 (cm);
TY = MN = 1/2 AC = 1/2 .6 =3 (cm)
Vậy : S X Y Z T = 1/2. 3. 4 = 6( c m 2 )
* Trong ∆ BCD, ta có:
E là trung điểm của BC (gt)
F là trung điểm của BD (gt)
Suy ra EF là đường trung bình của ∆ BCD
⇒ EF // CD và EF = 1/2 CD (1)
* Trong ∆ ACD, ta có: H là trung điểm của AC (gt)
G là trung điểm của AD (gt)
Suy ra HG là đường trung bình của ∆ ACD
⇒HG // CD và HG = 1/2 CD (2)
Từ (1) và (2) suy ra: EF // HG và EF = HG
Suy ra tứ giác EFGH là hình bình hành (vì có một cặp cạnh đối song song và bằng nhau).
* Mặt khác: EF // CD (chứng minh trên)
AB ⊥ CD (gt)
Suy ra EF ⊥ AB
Trong ∆ ABC ta có HE là đường trung bình ⇒ HE // AB
Suy ra: HE ⊥ EF hay ∠ (FEH) = 90 0
Vậy hình bình hành EFGH là hình chữ nhật.
Áp dụng tính chất đường trung bình vào các tam giác ABD, BDC, ABC, ADC ta chứng minh được
\(MI=MJ=JN=NI=\frac{AD}{2}=\frac{BC}{2}\)
=> Tứ giác MINJ là hình thoi.
Xét ▲ODC ta có:
\(\widehat{ADC}+\widehat{DCB}=90^o\)
\(\Rightarrow\widehat{COD}=90^o\)
Có: \(\widehat{MIN}=\widehat{COD}=90^o\) (cạnh tương ứng song song)
\(\Rightarrow MINJ\) là hình thoi vuông.
Xét Tam giác ABC có: N là trung điểm AC, P là trung điểm của AB
=> PM là đường trung bình của tam giác ABC=> PM//=1/2BC
Tương tự: NQ//=1/2 BC
PN//=1/2 AD
MQ//=1/2AD
Mà BC=AD => PM=NQ=PN=MQ=> Tứ giác MPNQ là hình thoi=> MN vuông góc PQ
Sửa đề; EG=FH
Xét ΔABD có
E,H lần lượt là trung điểm của AB,AD
=>EH là đường trung bình
=>EH//BD và EH=BD/2(1)
Xét ΔCBD có
F,G lần lượt là trung điểm của CG,CD
=>FG là đường trung bình
=>FG//BD và FG=BD/2(2)
Từ (1), (2) suy ra EH//FG và EH=FG
Xét tứ giác EHGF có
EH//FG
EH=FG
=>EHGF là hình bình hành
mà EG=FH
nên EHGF là hình chữ nhật
=>EH vuông góc HG
mà EH//BD
nên BD vuông góc HG
mà HG//AC
nên AC vuông góc BD