K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(=\sqrt{7-2\cdot\sqrt{7}\cdot\sqrt{2}+2}+\sqrt{7+2\cdot\sqrt{7}\cdot\sqrt{2}+2}\)

\(=\sqrt{\left(\sqrt{7}-\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{7}+\sqrt{2}\right)^2}\)

\(=\sqrt{7}-\sqrt{2}+\sqrt{7}+\sqrt{2}=2\sqrt{7}\)

25 tháng 9 2021

1)
\(=\sqrt{\left(\sqrt{11}\right)^2-2.\sqrt{11}.\sqrt{3}+\left(\sqrt{3}\right)^2}\)
\(=\sqrt{\left(\sqrt{11}-\sqrt{3}\right)^2}=\sqrt{11}-\sqrt{3}\)
2)
\(=\sqrt{\left(\sqrt{7}\right)^2-2.\sqrt{7}\sqrt{5}+\left(\sqrt{5}\right)^2}=\sqrt{\left(\sqrt{7}-\sqrt{5}\right)^2}=\sqrt{7}-\sqrt{5}\)
3)
\(=\sqrt{\left(\sqrt{11}\right)^2-2.\sqrt{11}\sqrt{5}+\left(\sqrt{5}\right)^2}=\sqrt{\left(\sqrt{11}-\sqrt{5}\right)}=\sqrt{11}-\sqrt{5}\)
4)
\(=\sqrt{3^2-2.3.\sqrt{5}+\left(\sqrt{5}\right)^2}=\sqrt{\left(3-\sqrt{5}\right)^2}=3-\sqrt{5}\)
5)
\(=\sqrt{3^2-2.3.2\sqrt{2}+\left(2\sqrt{2}\right)^2}=\sqrt{\left(3-2\sqrt{2}\right)^2}=3-2\sqrt{2}\)

 

12 tháng 8 2023

Với \(x\ge0;x\ne9\)

\(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}+1}{\sqrt{x}-3}+\dfrac{3-11\sqrt{x}}{9-x}\)

\(=\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}+1}{\sqrt{x}-3}-\dfrac{3-11\sqrt{x}}{9-x}\)

\(=\dfrac{2\sqrt{x}+\sqrt{x}+1-3+11\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{14\sqrt{x}-2}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}=\dfrac{14\sqrt{x}-2}{x-9}\)

25 tháng 9 2021

1) \(=\sqrt{\left(\sqrt{3}-1\right)^2}=\sqrt{3}-1\)

2) \(=\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}=\sqrt{3}+\sqrt{2}\)

3) \(=\sqrt{\left(\sqrt{5}-\sqrt{2}\right)^2}=\sqrt{5}-\sqrt{2}\)

5) \(=\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}=\sqrt{5}+\sqrt{3}\)

6) \(=\sqrt{\left(\sqrt{7}-\sqrt{3}\right)^2}=\sqrt{7}-\sqrt{3}\)

7) \(=\sqrt{\left(3+\sqrt{2}\right)^2}=3+\sqrt{2}\)

a) Ta có: \(\sqrt{3-2\sqrt{2}}-\sqrt{11+6\sqrt{2}}\)

\(=\sqrt{2}-1-3-\sqrt{2}\)

=-4

b) Ta có: \(\sqrt{4-2\sqrt{3}}-\sqrt{7-4\sqrt{3}}+\sqrt{19+8\sqrt{3}}\)

\(=\sqrt{3}-1-2+\sqrt{3}+4+\sqrt{3}\)

\(=3\sqrt{3}+1\)

c) Ta có: \(\sqrt{6-2\sqrt{5}}+\sqrt{9+4\sqrt{5}}-\sqrt{14-6\sqrt{5}}\)

\(=\sqrt{5}-1+\sqrt{5}-2-3+\sqrt{5}\)

\(=3\sqrt{5}-6\)

d) Ta có: \(\sqrt{11-4\sqrt{7}}+\sqrt{23-8\sqrt{7}}+\sqrt{\left(-2\right)^6}\)

\(=\sqrt{7}-2+4-\sqrt{7}+8\)

=10

a) Ta có: \(A^3=\left(\sqrt[3]{2+\sqrt{5}}+\sqrt[3]{2-\sqrt{5}}\right)^3\)

\(=2+\sqrt{5}+2-\sqrt{5}+3\cdot\sqrt[3]{\left(2+\sqrt{5}\right)\left(2-\sqrt{5}\right)}\left(\sqrt[3]{2+\sqrt{5}}+\sqrt[3]{2-\sqrt{5}}\right)\)

\(=4-3\cdot A\)

\(\Leftrightarrow A^3+3A-4=0\)

\(\Leftrightarrow A^3-A+4A-4=0\)

\(\Leftrightarrow A\left(A-1\right)\left(A+1\right)+4\left(A-1\right)=0\)

\(\Leftrightarrow\left(A-1\right)\left(A^2+A+4\right)=0\)

\(\Leftrightarrow A=1\)

NV
10 tháng 4 2019

\(A=\sqrt[3]{2^3+3.2^2.\sqrt{2}+3.2.\sqrt{2}^2+\sqrt{2}^3}+\sqrt[3]{\sqrt{2}^3-3.\sqrt{2}^2.2+3.\sqrt{2}.2^2-2^3}\)

\(A=\sqrt[3]{\left(2+\sqrt{2}\right)^3}+\sqrt[3]{\left(\sqrt{2}-2\right)^3}\)

\(A=2+\sqrt{2}+\sqrt{2}-2=2\sqrt{2}\)

\(X=\sqrt[3]{1+\frac{\sqrt{84}}{9}}+\sqrt[3]{1-\frac{\sqrt{84}}{9}}\)

\(\Rightarrow X^3=\left(\sqrt[3]{1+\frac{\sqrt{84}}{9}}+\sqrt[3]{1-\frac{\sqrt{84}}{9}}\right)^3\)

\(\Rightarrow X^3=2+3\sqrt[3]{1-\frac{84}{81}}\left(\sqrt[3]{1+\frac{\sqrt{84}}{9}}+\sqrt[3]{1-\frac{\sqrt{84}}{9}}\right)\)

\(\Rightarrow X^3=2-3\sqrt[3]{\frac{1}{27}}.X\)

\(\Rightarrow X^3=2-X\)

\(\Rightarrow X^3+X-2=0\)

\(\Rightarrow\left(X-1\right)\left(X^2+2X+2\right)=0\)

\(\Rightarrow X=1\) (do \(X^2+2X+2=\left(X+1\right)^2+1>0\) \(\forall X\))

7 tháng 8 2020

\(A=\sqrt{6-2\sqrt{5}}-\sqrt{6+2\sqrt{5}}\)

\(A=\sqrt{\left(\sqrt{5}-1\right)^2}-\sqrt{\left(\sqrt{5}+1\right)^2}\)

\(A=\sqrt{5}-1-\sqrt{5}-1\)

\(A=-2\)

\(B=\sqrt{9+4\sqrt{5}}-\sqrt{9-4\sqrt{5}}\)

\(B=\sqrt{\left(\sqrt{5}+2\right)^2}-\sqrt{\left(\sqrt{5}-2\right)^2}\)

\(B=\sqrt{5}+2-\sqrt{5}+2\)

\(B=4\)

Sửa đề :

\(C=\sqrt{14-6\sqrt{5}}-\sqrt{14+6\sqrt{5}}\)

\(C=\sqrt{\left(3-\sqrt{5}\right)^2}-\sqrt{\left(3+\sqrt{5}\right)^2}\)

\(C=3-\sqrt{5}-3-\sqrt{5}\)

\(C=-2\sqrt{5}\)

a: =(căn a-3)^2-b^2

=(căn a-3-b)(căn a-3+b)

b: \(x-9=\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)\)

c: \(x-7\sqrt{x}+12=x-3\sqrt{x}-4\sqrt{x}+12=\left(\sqrt{x}-3\right)\left(\sqrt{x}-4\right)\)

d: x*căn x-64

=(căn x)^3-4^3

=(căn x-4)(x+4căn x+16)

28 tháng 6 2023

\(a-6\sqrt{a}+9-b^2\\ =\left(\sqrt{a}+3\right)^2-b^2\\ =\left(\sqrt{a}+3-b\right)\left(\sqrt{a}+3+b\right)\)

 

\(x-9=\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)\)

 

\(x-7\sqrt{x}+12\\ =x-4\sqrt{x}-3\sqrt{x}+12\\ =\sqrt{x}\left(\sqrt{x}-4\right)-3\left(\sqrt{x}-4\right)\\ =\left(\sqrt{x}-4\right)\left(\sqrt{x}-3\right)\)

 

\(x\sqrt{x}+64\\ =\sqrt{x^3}+4^3\\ =\left(\sqrt{x}\right)^3+4^3\\ =\left(\sqrt{x}+4\right)\left(x-4\sqrt{x}+16\right)\)