K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

Gọi \(AC \cap BD = \left\{ O \right\}\) mà S.ABCD đều nên \(SO \bot \left( {ABCD} \right)\)

Xét tam giác ABC vuông tại B có \(AC = \sqrt {A{B^2} + B{C^2}}  = \sqrt {{a^2} + {a^2}}  = a\sqrt 2 \)

\( \Rightarrow OA = \frac{{AC}}{2} = \frac{{a\sqrt 2 }}{2}\)

Xét tam giác SAO vuông tại O có

\(SO = \sqrt {S{A^2} - A{O^2}}  = \sqrt {{b^2} - {{\left( {\frac{{a\sqrt 2 }}{2}} \right)}^2}}  = \sqrt {{b^2} - \frac{{{a^2}}}{2}}  = \frac{{\sqrt {4{b^2} - 2{a^2}} }}{2}\)

\({S_{ABCD}} = {a^2}\)

Vậy khối chóp có thể tích \(V = \frac{1}{3}SO.{S_{ABCD}} = \frac{1}{3}.\frac{{\sqrt {4{b^2} - 2{a^2}} }}{2}.{a^2} = \frac{{{a^2}\sqrt {4{b^2} - 2{a^2}} }}{6}\)

15 tháng 4 2017

Đáp án A

Ta có: S đ = S A B C D = A B 2 = 3 a 2 .Gọi O là tâm hình vuông ABCD

 suy ra S O ⊥ A B C D .

Do đó

  O C = A C 2 = a 6 2 ⇒ S O = S A 2 − O A 2 = a 10 2

 Suy ra   V S . A B C D = 1 3 S O . S A B C D = a 3 10 2

8 tháng 6 2017

28 tháng 11 2018

Đáp án A

Gọi O là tâm của mặt đáy.

Ta có: 

Suy ra 

22 tháng 5 2017

7 tháng 9 2019

Chọn A.

Phương pháp:

- Xác định góc giữa cạnh bên và mặt đáy.

- Tính diện tích đáy và chiều cao suy ra thể tích theo công thức  

Chọn A.

Phương pháp:

- Xác định góc giữa cạnh bên và mặt đáy.

- Tính diện tích đáy và chiều cao suy ra thể tích theo công thức   V = 1 3 S h

26 tháng 3 2018

Đáp án A

27 tháng 2 2019

Gọi O là tâm của hình vuông ABCD

ABCD là hình vuông cạnh

 

 tam giác SOC vuông tại O

 

Thể tích khối chóp S.ABCD là:

Chọn: D

11 tháng 8 2018

Đáp án C

Gọi O  tâm đáy ABCD. Khi đó S O ⊥ A B C D

suy ra AO  hình chiếu vuông góc của SA lên mặt phẳng đáy. Khi đó góc giữa cạnh bên SA  đáy là  S A O ^

Suy ra  S A O ^ = 60 °

Vậy thể tích khối chóp là:

V = 1 3 . S O . S A B C D = a 3 6 6

8 tháng 8 2019

Đáp án B

Ta có: 2 B I 2 = a 2 ⇒ B I = a 2 ; S I = B I tan 60 0 = a 3 2  

Thể tích khối chóp S.ABCD 

V = 1 3 S I . S A B C D = 1 3 a 3 2 . a 2 = a 3 6 6