Tính nhanh
A=2/6+2/12+2/20+2/30+...+2/10100
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
A = (22.21.20 - 2.1.0) : 3
A = 9240 : 3
A = 3080
3.A = 3080 x 3
3.A = 9240
\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+...+\frac{1}{10100}\)
\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{100.101}\)
\(=\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+\frac{5-4}{4.5}+\frac{6-5}{5.6}+...+\frac{101-100}{100.101}\)
\(=\frac{2}{1.2}-\frac{1}{1.2}+\frac{3}{2.3}-\frac{2}{2.3}+\frac{4}{3.4}-\frac{3}{3.4}+\frac{5}{4.5}-\frac{4}{4.5}+\frac{6}{5.6}-\frac{5}{6.5}+...+\frac{101}{100.101}-\frac{100}{100.101}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{100}-\frac{1}{101}\)
\(=1-\frac{1}{101}\)
\(=\frac{100}{101}\)
A= 1/1.2 +1/2.3 + 1/3.4 + 1/4.5 +...............+ 1/100.101
A= 1 - 1/2 +1/2 - 1/3 + 1/3 - 1/4 +..................+1/100 - 1/101
A= 1 - 1/101
A = 100/101
A=3/2+13/12+31/30+...+9901/9900
= 1+1/2+1+1/12+1+1/30+...+1+1/9900
=1+1+1+...+1+1(50 cs)+1/2+1/12+1/30+...+1/9900
=50+1/2+1/12+1/30+...+1/9900
B=5/6+19/20+41/42+...+10099/10100
=(1-1/6)+(1-1/20)+(1-1/42)+...+(1-1/10100)
=1+1+...+1(50cs)-1/6-1/20-1/42-...-1/10100
A-B=(50+1/2+1/12+1/30+...+1/9900)-(50-1/6-1/20-1/42-...-1/10100)
=1/2+1/6+1/12+1/20+...+1/9900+1/10100
=1/1.2+1/2.3+1/3.4+1/4.5+...+1/99.100+1/100.101
=1-1/2+1/2-1/3+1/3-1/4+1/4-...+1/99-1/100+1/100-1/101
=1-1/101
=100/101
Ta thấy:
2=1x2 ; 6=2x3 ; 12=3x4 ; 20=4x5 ; 30=5x6 ; 42=6x7 ; …..
Mỗi số hạng là tích của 2 số tự nhiên liên tiêp mà 10100 = 100x101
Nên 10100 là số hạng thứ 100 của dãy số trên.
Có ai biết tính tổng 15 số đầu ko
CẦN GẤP NHA!!CẢM ƠN!!!
A = 1+ 1+1+ ...+ 1 +(\(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+...+\dfrac{1}{9900}+\dfrac{1}{10100}\))
=(1+1+1+...+1)+ (\(\dfrac{1}{1x2}+\dfrac{1}{2x3}+\dfrac{1}{3x4}+...+\dfrac{1}{99x100}+\dfrac{1}{100x101}\))
=100 +\(1-\dfrac{1}{101}=100-\dfrac{100}{101}=\dfrac{10000}{101}\)
1+1/2+1+1/6+1+1/12+...+1+1/9900
=1+1/1*2+1+1/2.3+....+1+1/99*100
=100*1+1-1/2+1/2-1/3+1/3-1/4...+1/99-1/100
=100+99/100
=10099/100
\(A=\dfrac{2}{6}+\dfrac{2}{12}+\dfrac{2}{20}+\dfrac{2}{30}+...+\dfrac{2}{10100}\)
\(A=2\times\left(\dfrac{1}{2\times3}+\dfrac{1}{3\times4}+\dfrac{1}{4\times5}+\dfrac{1}{5\times6}+...+\dfrac{1}{100\times101}\right)\)
\(A=2\times\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{100}-\dfrac{1}{101}\right)\)
\(A=2\times\left(\dfrac{1}{2}-\dfrac{1}{101}\right)\)
\(A=2\times\dfrac{99}{202}\)
\(A=\dfrac{99}{101}\)