K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(VT=\sqrt{\left(\sqrt{3}+1\right)^2}-\sqrt{\left(\sqrt{3}-1\right)^2}\)

\(=\sqrt{3}+1-\sqrt{3}+1\)

=2=VP

NV
10 tháng 8 2021

Đặt \(\left\{{}\begin{matrix}\sqrt[3]{x^2}=a\ge0\\\sqrt[3]{y^2}=b\ge0\end{matrix}\right.\)

\(P=\sqrt{a^3+a^2b}+\sqrt{b^3+ab^2}=\sqrt{a^2\left(a+b\right)}+\sqrt{b^2\left(a+b\right)}\)

\(=a\sqrt{a+b}+b\sqrt{a+b}=\left(a+b\right)\sqrt{a+b}\)

\(\Rightarrow P^2=\left(a+b\right)^2\left(a+b\right)=\left(a+b\right)^3\)

\(\Rightarrow\sqrt[3]{P^2}=a+b=\sqrt[3]{x^2}+\sqrt[3]{y^2}\) (đpcm)

NV
7 tháng 10 2019

\(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n+1\right)^2-n^2\left(n+1\right)}=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n+1\right)}=\frac{\sqrt{n}}{n}+\frac{\sqrt{n+1}}{n+1}\)

\(\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+...+\frac{1}{100\sqrt{99}+99\sqrt{100}}\)

\(=\frac{\sqrt{1}}{1}-\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2}-\frac{\sqrt{3}}{3}+...+\frac{\sqrt{99}}{99}-\frac{\sqrt{100}}{100}\)

\(=1-\frac{\sqrt{100}}{100}=\frac{9}{10}< 1\)

NV
30 tháng 6 2021

\(\dfrac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\dfrac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{\left(n+1\right)^2n-n^2\left(n+1\right)}\)

\(=\dfrac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n+1\right)}=\dfrac{1}{\sqrt{n}}-\dfrac{1}{\sqrt{n+1}}\)

Do đó:

\(VT=\dfrac{1}{\sqrt{1}}-\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{n}}-\dfrac{1}{\sqrt{n+1}}\)

\(VT=1-\dfrac{1}{\sqrt{n+1}}< 1\) (đpcm)

18 tháng 12 2023

\(\dfrac{1}{\sqrt{1}+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}...+\dfrac{1}{\sqrt{79}+\sqrt{80}}\)

\(=\left(\sqrt{2}-\sqrt{1}\right)+\left(\sqrt{3}-\sqrt{2}\right)+...+\left(\sqrt{80}-\sqrt{79}\right)\)

\(=\sqrt{80}-\sqrt{2}\)

Đến đây bấm máy rồi đối chiếu kết quả cho nhanh, hoặc nếu em thik "màu mè" hơn thì giả sử lớn hơn rồi biến đổi tương đương thôi :)

11 tháng 10 2021

\(a,\sqrt{22-12\sqrt{2}}+\sqrt{6+4\sqrt{2}}=\sqrt{\left(3\sqrt{2}-2\right)^2}+\sqrt{\left(2+\sqrt{2}\right)^2}\\ =3\sqrt{2}-2+2+\sqrt{2}=4\sqrt{2}\\ b,\dfrac{1}{\sqrt{n}+\sqrt{n+1}}=\dfrac{\sqrt{n}-\sqrt{n+1}}{n-n-1}\\ =\dfrac{\sqrt{n}-\sqrt{n+1}}{-1}=\sqrt{n+1}-\sqrt{n}\)

11 tháng 10 2021

a) \(\sqrt{22-12\sqrt{2}}+\sqrt{6+4\sqrt{2}}\)

\(=\sqrt{\left(3\sqrt{2}-2\right)^2}+\sqrt{\left(2+\sqrt{2}\right)^2}\)

\(=3\sqrt{2}-2+2+\sqrt{2}=4\sqrt{2}\)

b) \(\dfrac{1}{\sqrt{n}+\sqrt{n+1}}=\dfrac{\sqrt{n+1}-\sqrt{n}}{n+1-n}=\sqrt{n+1}-\sqrt{n}\)