K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 9 2017

 P = x(x/2+1/yz) + y(y/2+1/zx) + z(z/2+1/xy) 

= ½ [x(xyz +2)/(yz) + y(xyz +2)/(xz) + z(xyz +2)/(xy)]

= ½ (xyz +2)[x/(yz) + y/(xz) + z/(xy)] ≥ ½ (xyz +2).3 /³√(xyz)

Lại có: xyz + 2 = xyz + 1 +1 ≥ 3 ³√(xyz) 

Suy ra: 

P = ½ (xyz +2)[x/(yz) + y/(xz) + z/(xy)] ≥ ½ (xyz +2).3 /³√(xyz) 

≥ 3/2 .3 ³√(xyz)/ ³√(xyz) = 9/2 

Vậy P min = 9/2 

Dấu = xra khi x = y = z = 1 

1 tháng 9 2017

Bài 1: 
Ta có 
A =x/(x+1) +y/(y+1)+z/(z+1) 
A= 1- 1/(x+1)+1-1/(y+1) +1-1/(z+1) 
A=3- [1/(x+1)+1/(y+1) +1/(z+1) ] 
B = 1/(x+1)+1/(y+1) +1/(z+1) 
Đặt x+1=a; y+1=b;z+1 =c 
=>a+b+c=4 
4B=4(1/a+1/b+1/c) 
B= (a+b+c) (1/a+1/b+1/c) 
4B =3+(a/b+b/a) +(a/c+c/a)+(b/c+c/a) 

Từ (a-b)^2 ≥ 0 =>a^2+b^2 ≥ 2ab chia 2 vế cho ab 
=> a/b+b/a ≥2 dấu "=" khi a=b 
Tương tự có 
a/c+c/a ≥2 ;b/c+c/b ≥2 
=>4B ≥3+2+2+2=9 
=>B ≥ 9/4 
=>A ≤ 3-9/4 = 3/4 
Vậy max A =3/4 khi a=b=c 
=>x=y=z =1/3 

Bài 2:

Giúp tui nha

3 tháng 2 2023

1) Áp dụng bđt Cauchy cho 3 số dương ta có

 \(\dfrac{1}{x}+\dfrac{1}{x}+\dfrac{1}{x}+x^3\ge4\sqrt[4]{\dfrac{1}{x}.\dfrac{1}{x}.\dfrac{1}{x}.x^3}=4\) (1)

\(\dfrac{3}{y^2}+y^2\ge2\sqrt{\dfrac{3}{y^2}.y^2}=2\sqrt{3}\) (2)

\(\dfrac{3}{z^3}+z=\dfrac{3}{z^3}+\dfrac{z}{3}+\dfrac{z}{3}+\dfrac{z}{3}\ge4\sqrt[4]{\dfrac{3}{z^3}.\dfrac{z}{3}.\dfrac{z}{3}.\dfrac{z}{3}}=4\sqrt{3}\) (3)

Cộng (1);(2);(3) theo vế ta được

\(\left(\dfrac{3}{x}+\dfrac{3}{y^2}+\dfrac{3}{z^3}\right)+\left(x^3+y^2+z\right)\ge4+2\sqrt{3}+4\sqrt{3}\)

\(\Leftrightarrow3\left(\dfrac{1}{x}+\dfrac{1}{y^2}+\dfrac{1}{z^3}\right)\ge3+4\sqrt{3}\)

\(\Leftrightarrow P\ge\dfrac{3+4\sqrt{3}}{3}\)

Dấu "=" xảy ra <=> \(\left\{{}\begin{matrix}\dfrac{1}{x}=x^3\\\dfrac{3}{y^2}=y^2\\\dfrac{3}{z^3}=\dfrac{z}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=\sqrt[4]{3}\\z=\sqrt{3}\end{matrix}\right.\) (thỏa mãn giả thiết ban đầu)

 

3 tháng 2 2023

2) Ta có \(4\sqrt{ab}=2.\sqrt{a}.2\sqrt{b}\le a+4b\)

Dấu"=" khi a = 4b

nên \(\dfrac{8}{7a+4b+4\sqrt{ab}}\ge\dfrac{8}{7a+4b+a+4b}=\dfrac{1}{a+b}\)

Khi đó \(P\ge\dfrac{1}{a+b}-\dfrac{1}{\sqrt{a+b}}+\sqrt{a+b}\)

Đặt \(\sqrt{a+b}=t>0\) ta được

\(P\ge\dfrac{1}{t^2}-\dfrac{1}{t}+t=\left(\dfrac{1}{t^2}-\dfrac{2}{t}+1\right)+\dfrac{1}{t}+t-1\)

\(=\left(\dfrac{1}{t}-1\right)^2+\dfrac{1}{t}+t-1\)

Có \(\dfrac{1}{t}+t\ge2\sqrt{\dfrac{1}{t}.t}=2\) (BĐT Cauchy cho 2 số dương)

nên \(P=\left(\dfrac{1}{t}-1\right)^2+\dfrac{1}{t}+t-1\ge\left(\dfrac{1}{t}-1\right)^2+1\ge1\)

Dấu "=" xảy ra <=> \(\left\{{}\begin{matrix}\dfrac{1}{t}-1=0\\t=\dfrac{1}{t}\end{matrix}\right.\Leftrightarrow t=1\)(tm)

khi đó a + b = 1

mà a = 4b nên \(a=\dfrac{4}{5};b=\dfrac{1}{5}\)

Vậy MinP = 1 khi \(a=\dfrac{4}{5};b=\dfrac{1}{5}\)

 

AH
Akai Haruma
Giáo viên
12 tháng 8 2021

Sao lúc thì $x,y,z$ lúc thì $a,b$ vậy bạn? Bạn coi lại đề.

4 tháng 8 2021

còn cách làm khác không ạ?

 

1 tháng 9 2023

a) \(a\left(b+1\right)=3\left(a;b\inℤ\right)\)

\(\Rightarrow a;\left(b+1\right)\in U\left(3\right)=\left\{-1;1;-3;3\right\}\)

\(\Rightarrow\left(a;b\right)\in\left\{\left(-1;-4\right);\left(1;2\right);\left(-3;-2\right);\left(3;0\right)\right\}\)

b) \(2n+7⋮n+1\left(n\inℤ\right)\)

\(\Rightarrow2n+7-2\left(n+1\right)⋮n+1\)

\(\Rightarrow2n+7-2n-2⋮n+1\)

\(\Rightarrow5⋮n+1\)

\(\Rightarrow n+1\in U\left(5\right)=\left\{-1;1;-5;5\right\}\)

\(\Rightarrow n\in\left\{-2;0;-6;4\right\}\)

c) \(xy+x-y=6\left(x;y\inℤ\right)\)

\(\Rightarrow x\left(y+1\right)-y-1+1=6\)

\(\Rightarrow x\left(y+1\right)-\left(y+1\right)=5\)

\(\Rightarrow\left(x-1\right)\left(y+1\right)=5\)

\(\Rightarrow\left(x-1\right);\left(y+1\right)\in U\left(5\right)=\left\{-1;1;-5;5\right\}\)

\(\Rightarrow\left(x;y\right)\in\left\{\left(-0;-6\right);\left(2;4\right);\left(-4;-2\right);\left(6;0\right)\right\}\)

10 tháng 4 2017

Câu 2-Ta có x^2+y^2=5

(x+y)^2-2xy=5

Đặt x+y=S. xy=P

S^2-2P=5

P=(S^2-5)/2

Ta lại có P=x^3+y^3=(x+y)^3-3xy(x+y)=S^3-3SP=S^3-3S(S^2-5)/2

Rùi tự tính

10 tháng 4 2017

Câu1

Ta có P<=a+a/4+b+a/12+b/3+4c/3 (theo bdt cô sy)

=> P<=4/3(a+b+c)=4/3

Vậy Max p =4/3 khi a=4b=16c 

9 tháng 12 2021

\(1,Q=\dfrac{a^4-2a^2+a^3-2a+a^2-2}{a^4-2a^2+2a^3-4a+a^2-2}\\ Q=\dfrac{\left(a^2-2\right)\left(a^2+a+1\right)}{\left(a^2-2\right)\left(a^2+2a+1\right)}=\dfrac{a^2+a+1}{a^2+2a+1}\)

\(Q=\dfrac{x^2+x+1}{\left(x+1\right)^2}-\dfrac{3}{4}+\dfrac{3}{4}=\dfrac{x^2+x+1-\dfrac{3}{4}x^2-\dfrac{3}{2}x-\dfrac{3}{4}}{\left(x+1\right)^2}+\dfrac{3}{4}\\ Q=\dfrac{\dfrac{1}{4}x^2-\dfrac{1}{2}x+\dfrac{1}{4}}{\left(x+1\right)^2}+\dfrac{3}{4}=\dfrac{\dfrac{1}{4}\left(x-1\right)^2}{\left(x+1\right)^2}+\dfrac{3}{4}\ge\dfrac{3}{4}\\ Q_{min}=\dfrac{3}{4}\Leftrightarrow x=1\)

9 tháng 12 2021

\(2,\text{Từ GT }\Leftrightarrow\dfrac{ayz+bxz+czy}{xyz}=0\\ \Leftrightarrow ayz+bxz+czy=0\\ \text{Ta có }\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}=1\\ \Leftrightarrow\left(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}\right)^2=1\\ \Leftrightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+2\left(\dfrac{xy}{ab}+\dfrac{yz}{bc}+\dfrac{zx}{ca}\right)=0\\ \Leftrightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+2\cdot\dfrac{cxy+ayz+bzx}{abc}=1\\ \Leftrightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+2\cdot\dfrac{0}{abc}=1\\ \Leftrightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}=1\)