K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 8 2016

đầu tiên phải sửa điều kiện của a đó là \(a\ne9\)

 

15 tháng 8 2016

R sao nữa bn

2 tháng 8 2016

hàiiii chán quá

28 tháng 7 2015

bn viết lại đề đi 

3 tháng 10 2019

https://hoc24.vn/id/2782086

3 tháng 10 2019

@Nguyễn Việt Lâm

8 tháng 2 2017

Áp dụng C-S

\(\frac{a}{2a+b+c}=\frac{a}{\left(a+b\right)+\left(a+c\right)}\le\frac{a}{4}\left(\frac{1}{a+b}+\frac{1}{a+c}\right)\)

9 tháng 2 2017

b) chính là USAMO 2004. Đây là lời giải cung cấp bởi "http://www.artofproblemsolving.com/wiki/index.php/2004_USAMO_Problems/Problem_5"

Ta chứng minh được \(x^5+1\ge x^3+x^2\) suy ra \(x^5-x^2+3\ge x^3+2\).

Ta chỉ cần CM được \(\left(a^3+1+1\right)\left(1+b^3+1\right)\left(1+1+c^3\right)\ge\left(a+b+c\right)^3\)

Nhưng đây chính là BĐT Holder cho 3 bộ số mỗi bộ 3 số.

3 tháng 10 2018

ĐK : \(a\ne b\ne c\)

\(\dfrac{a^3+b^3+c^3-3abc}{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}\)

\(=\dfrac{\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc}{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}\)

\(=\dfrac{\left(a+b+c\right)\left(a^2+b^2+c^2+2ab-bc-ca\right)-3ab\left(a+b+c\right)}{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}\)

\(=\dfrac{\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)}{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}\)

\(=\dfrac{2\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)}{2\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]}\)

\(=\dfrac{\left(a+b+c\right)\left[\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)\right]}{2\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]}\)

\(=\dfrac{\left(a+b+c\right)\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]}{2\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]}\)

\(=\dfrac{a+b+c}{2}\)