Tính : 2/1x4+2/4x7+2/7x10+......+2/100x103
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dấu \(.\)là dấu nhân
Ta có :
\(E=\frac{2}{1.4}+\frac{2}{4.7}+\frac{2}{7.10}+...+\frac{2}{100.103}\)
\(\Rightarrow E=\frac{2}{3}.\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{2}{100.103}\right)\)
\(\Rightarrow E=\frac{2}{3}.\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{100}-\frac{1}{103}\right)\)
\(\Rightarrow E=\frac{2}{3}.\left(1-\frac{1}{103}\right)\)
\(\Rightarrow E=\frac{2}{3}.\frac{102}{103}\)
\(\Rightarrow E=\frac{68}{103}\)
Vậy \(E=\frac{68}{103}\)
~ Ủng hộ nhé
\(E=\frac{2}{1\cdot4}+\frac{2}{4\cdot7}+...+\frac{2}{100\cdot103}\)
\(E=2\cdot\left(\frac{1}{1\cdot4}+\frac{1}{4\cdot7}+...+\frac{1}{100\cdot103}\right)\)
Gọi tổng trong ngoặc là F
\(\Rightarrow3F=\frac{3}{1\cdot4}+\frac{3}{4\cdot7}+...+\frac{3}{100\cdot103}\)
\(\Rightarrow3F=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{100}-\frac{1}{103}\)
\(\Rightarrow3F=1-\frac{1}{103}=\frac{102}{103}\)
\(\Rightarrow F=\frac{102}{103\cdot3}=\frac{34}{103}\)
\(\Leftrightarrow E=2\cdot\frac{34}{103}=\frac{68}{103}\)
Vậy......
S=1/1-1/4+1/4+1/7-1/7+1/10+...+1/100-1/103
S=1/1-1/103
S=102/103
Vì 102/103<1 nên S<1
\(\frac{2}{1\times4}+\frac{2}{4\times7}+\frac{2}{7\times10}+...+\frac{2}{37\times40}\)
\(=\frac{2}{3}\times\left(\frac{3}{1\times4}+\frac{3}{4\times7}+\frac{3}{7\times10}+...+\frac{3}{37\times40}\right)\)
\(=\frac{2}{3}\times\left(\frac{4-1}{1\times4}+\frac{7-4}{4\times7}+\frac{10-7}{7\times10}+...+\frac{40-37}{37\times40}\right)\)
\(=\frac{2}{3}\times\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{37}-\frac{1}{40}\right)\)
\(=\frac{2}{3}\times\left(1-\frac{1}{40}\right)=\frac{13}{20}\)
\(\frac{11}{1.4}+\frac{11}{4.7}+...+\frac{11}{100.103}\)
\(=\frac{11}{3}\left(\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{100.103}\right)\)
\(=\frac{11}{3}\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{100}-\frac{1}{101}\right)\)
\(=\frac{11}{3}\left(1-\frac{1}{103}\right)\)
Tự tính
\(\frac{11}{1.4}+\frac{11}{4.7}+...+\frac{11}{100.103}\)
= \(\frac{11}{3}.\left(\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{100.103}\right)\)
= \(\frac{11}{3}.\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{100}-\frac{1}{103}\right)\)
= \(\frac{11}{3}.\left(1-\frac{1}{103}\right)\)
= \(\frac{11}{3}.\frac{102}{103}\)
= \(\frac{374}{103}\)
\(=\dfrac{2}{3}\left(\dfrac{3}{1\cdot4}+\dfrac{3}{4\cdot7}+...+\dfrac{3}{31\cdot34}\right)\)
\(=\dfrac{2}{3}\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{31}-\dfrac{1}{34}\right)\)
\(=\dfrac{2}{3}\cdot\dfrac{33}{34}=\dfrac{11}{17}\)
\(A=3\times\left(\frac{3}{1\times4}+\frac{3}{4\times7}+\frac{3}{7\times10}+...+\frac{3}{97\times100}\right)\)
\(A=3\times\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{97}-\frac{1}{100}\right)\)
\(A=3\times\left(1-\frac{1}{100}\right)\)
\(A=3\times\frac{99}{100}\)
\(A=\frac{297}{100}\)
\(A=\frac{3^2}{1.4}+\frac{3^2}{4.7}+\frac{3^2}{7.10}+......+\frac{3^2}{97.100}\)
\(A=3.\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+....+\frac{3}{97.100}\right)\)
Đặt \(S=\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{97.100}\)
Ta có: \(S=\frac{3}{3}.\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+.....+\frac{3}{97.100}\right)\)
\(S=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+.....+\frac{1}{97}-\frac{1}{100}\)
\(S=1-\frac{1}{100}=\frac{99}{100}\)
\(\Rightarrow A=3.S=3.\frac{99}{100}=\frac{297}{100}\)
ta thấy
1.4=1(2+2)=1.2+1.2=1.2+2
2.5=2(3+2)=2.3+2.2=2.3+4
......................................
100.103=100(101+2)=100.101+100.2=100.101+200
B=1.2+2+2.3+4+3.4+6+...........................+100.101+200
đặt các phép tính nhân là C còn đặt các số tự nhiên là D
tính D trước khoảng cách các số hạng là 2
co so số hang là :(200-2):2+1=100 số hạng
D= (200+2).100:2=10100
tính C
ta thấy
1.2=1.2.3/3
2.3=2.3.4/3
................
100.101=100.101.102/3
triệt tiêu các phân số ta có
100.101.102/3-0=343400
vậy B=C+D=343400+10100=353500
Đặt \(B=\frac{2}{1\cdot4}+\frac{2}{4\cdot7}+\frac{2}{7\cdot10}+......+\frac{2}{100\cdot103}\)
\(B=\frac{2}{3}\cdot\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+.....+\frac{1}{100}-\frac{1}{103}\right)\)
\(B=\frac{2}{3}\cdot\left(1-\frac{1}{103}\right)\)
\(B=\frac{2}{3}\cdot\frac{102}{103}\)
\(\Rightarrow B=\frac{68}{103}\)
Đặt \(A=\frac{2}{1.4}+\frac{2}{4.7}+\frac{2}{7.10}+...+\frac{2}{100.103}\)
\(A=\frac{2}{3}\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{100}-\frac{1}{103}\right)\)
\(A=\frac{2}{3}\left(1-\frac{1}{103}\right)\)
\(A=\frac{2}{3}\cdot\frac{102}{103}\)
\(A=\frac{68}{103}\)