K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 6 2017

Bạn xem lại đề nhé . Đề sai rồi 

30 tháng 6 2017

đề đúng mà

11 tháng 7 2016

c/m bieu thuc k phu thuoc vao x,tuc la bien đoi để b/t k còn x

bài này dễ nhung dai, mk lam c) 

= (x-1 -x -1)(x2 -2x +1 +x2 -1 +x2 +2x +1) +6(x2-1)=

= -2(3x2 +1) +6x2 - 6= -6xx -2 +6x2 -6 = -8 (k phụ thuộc vào x)(dpcm)

23 tháng 10 2015

A = ( x-2 )- (x-3)*(x-1)

A= x2 -4x -4 - x2 +x +3x -3

A= 1

Vậy A ko phụ thuộc vào biến x

31 tháng 7 2018

Thực hiện khai triển hằng đẳng thức

A = ( x 3  – 1) + ( x 3  – 6 x 2  + 12x – 8) – 2( x 3  + 1) + 6( x 2  – 2x + 1).

Rút gọn A = -5 không phụ thuộc biến x.

21 tháng 6 2016

ta có: \(\left(x+1\right)^3-\left(x-1\right)^3-6\left(x+1\right)\left(x-1\right)=x^3+3x^2+3x+1-\left(x^3-3x^2+3x-1\right)-6\left(x^2-1\right)\)

                                                                            =\(6x^2+2-6x^2+6=8\)ko phụ thuộc vào x

21 tháng 6 2016

thanks bạn nhìu 

 

19 tháng 8 2023

\(\left(\sqrt[3]{x}+1\right)^3-\left(\sqrt[3]{x}-1\right)^3-6\left(\sqrt[3]{x}-1\right)\left(\sqrt[3]{x}+1\right)\\ =x+3\sqrt[3]{x^2}+3\sqrt[3]{x}+1-\left(x-3\sqrt[3]{x^2}+3\sqrt[3]{x}-1\right)-6\left(\sqrt[3]{x^2}-1\right)\\ =x+3\sqrt[3]{x^2}+3\sqrt[3]{x}+1-x+3\sqrt[3]{x^2}-3\sqrt[3]{x}+1-6\sqrt[3]{x^2}+6\\ =8\)

 

AH
Akai Haruma
Giáo viên
19 tháng 8 2023

Lời giải:
Gọi biểu thức là $A$

\(A=(x+3\sqrt[3]{x^2}+3\sqrt[3]{x}+1)-(x-3\sqrt[3]{x^2}+3\sqrt[3]{x}-1)-6(\sqrt[3]{x^2}-1)\)

\(6\sqrt[3]{x^2}+2-6(\sqrt[3]{x^2}-1)=8\) là giá trị không phụ thuộc vào biến.

3 tháng 9 2019

Ta có \(x^4+y^4=\left(x^2\right)^2+\left(y^2\right)^2=\left(x^2+y^2\right)^2-2x^2y^2\)

\(=1-2x^2y^2\)

Tương tự \(x^6+y^6=\left(x^2\right)^3+\left(y^2\right)^3=\left(x^2+y^2\right)\left(x^2+y^2-x^2y^2\right)=1-x^2y^2\)

Thế vào ta được

\(2\left(1-x^2y^2\right)-3\left(1-2x^2y^2\right)=2-2x^2y^2-3+6x^2y^2=4x^2y^2-1=\left(2xy\right)^2-1\)

Vậy là nó có phụ thuộc vào biến x,y mà bạn ? đề có sai không 

Dũng Lê Trí ơi bạn viết sai rồi \(\left(x^2\right)^3+\left(y^2\right)^3\)phải bằng\(\left(x^2+y^2\right)\left(x^4+y^4-x^2y^2\right)\)

NV
14 tháng 8 2021

\(\left(x-1\right)^3-x^3+3x^2-3x-1\)

\(=\left(x-1\right)^3-\left(x^3-3x^2+3x-1\right)-2\)

\(=\left(x-1\right)^3-\left(x-1\right)^3-2\)

\(=-2\) (ko phụ thuộc x)