f(x)=ax^2+bx+c
f(0)=2010
f(1)=2011
f(2)=2012
tìm a,b,c
mn giải nhanh giúp em em đang cần gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có F(0)=c=0
=>c=0
Ta lại có F(1)=a×1^2+b×1+c=2
F(1)=a+b+0=2
F(1)=a+b=2
Ta lại có F(2)=a×2^2+2b+c=2
F(2)=4a+2b+0=2
F(2)=4a+2b=2
F(2)=2a+b=1
F(2)=2a+b-2=1-2=-1
F(2)=2a+b-a-b=-1 (Do a+b=1)
F(2)=a=-1
Thay a=-1 vào a+b=1
Ta có -1+b=1
=>b=2
Vậy a=-1,b=2
Ta có:
f(1)=a+b+c
f(-1)=a-b+c
f(2)=4a+2b+c
=> f(1)+f(2)+f(-1)=6a+2b+3c=0
=> 3 số f91), f(-1), f(2) không thể cùng âm hoặc cuàng dươg
Lời giải:
Theo định lý Bê-du về phép chia đa thức thì số dư của $f(x)$ chia cho $x-a$ có số dư là $f(a)$.
Áp dụng vào bài:
$f(2)=8a+4b+10=14\Leftrightarrow 2a+b=1(1)$
$f(-1)=-a+b-14=-16\Leftrightarrow -a+b=-2(2)$
Từ $(1); (2)\Rightarrow a=1; b=-1$
Ta có: f(x) = ax2 +bx +c => f(0) = c => c=2013
f(1) = a+b+c = 2014 => a+b = 2014 - 2013 = 1
f(-1) = a-b+c = 2015 => a-b = 2015 - 2013 = 2
Từ đây tính đc a và b là: a=1,5 và b = -0,5
Xét đa thức f(x)=ax^2+bx+c
Ta có :
f(0)=a.0^2+b.0+c=c mà f(0)=2013 nên c=2013 (1)
f(1)=a.1^2+b.1+c=a+b+c mà f(1)=2014 nên a+b+c = 2014 (2)
f(-1)=a.(-1)^2+b.(-1)+c=a-b+c mà f(-1)=2015 nên a-b+c = 2015 (3)
Từ (1) và (2) suy ra a+b=1(*)
Từ (1) và (3) suy ra a-b=2(**)
Từ (*) và(**) suy ra a+b+a-b=1+2 =>2a=3=>a=1,5
Thay a=1,5 vào (*) ta được:b= -0,5
Vậy f(-2)=1,5.(-2)+(-0,5)(-2)+2013=-3+1+2013=2011
\(2x^4-x^3+2x^2+1=2x^4-2x^3+2x^2+x^3-x^2+x+x^2-x+1\\ \)
\(=2x^2\left(x^2-x+1\right)+x\left(x^2-x+1\right)+\left(x^2-x+1\right)=\left(x^2-x+1\right)\left(2x^2+x+1\right)\)
Vậy a = 2; b = 1; c = 1.
Ta có:f(1)=a+b+c
và f(-1)=a-b+c
Theo đề: f(1)+f(-1) \(⋮\)3
hay (a+b+c)+(a-b+c) \(⋮\)3
=> 2a +2c \(⋮\)3
=> 2(a+c) \(⋮\)3
mà (2,3)=1
nên a+c \(⋮\) 3
f(x) = ax2 + bx + c
f(0) = a.02 + b.0 + c = 2010 <=> c = 2010
f(1) = a.12 + b.1 + c = 2011 <=> a + b = 2011 - 2010 = 1
f(2) = a.22 + 2b + c = 2012 <=> 4a + 2b + c = 2012
Có 4a + 2b + c = 2012
<=> 2a + 2(a + b) + c = 2012
<=> 2a + 2 + 2010 = 2012
<=> a = 0
Với a = 0
=> b = 1
Vậy a = 0 ; b = 1 ; c = 2010
nice :))
ありがとうございます