Luyện tập – Vận dụng 2
Lập bảng biến thiên và vẽ đồ thị hàm số \(y = {\left( {\frac{1}{3}} \right)^x}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có thể viết
\(y=\left\{{}\begin{matrix}2x-3;\left(x\ge\dfrac{3}{2}\right)\\-2x+3;\left(x< \dfrac{3}{2}\right)\end{matrix}\right.\)
a: Bảng biến thiên:
Đồ thị:
b: Bảng biến thiên:
Đồ thị:
Tập xác định của hàm số \(D=\mathbb{R}\).
Ngoài ra \(f\left(-x\right)=\left(-x\right)^2-2\left|-x\right|+1=x^2-2\left|x\right|+1=f\left(x\right)\) Hàm số là hàm số chẵn. Đồ thị của nó nhận trục tung làm trục đối xứng. Để xét chiều biến thiên và vẽ đồ thị của nó chỉ cần xét chiều biến thiên và vẽ đồ thị của nó trên nửa khoảng [0; \(+\infty\)), rồi lấy đối xứng qua Oy. Với \(x\ge0\), có \(f\left(x\right)=x^2-2x+1\)
\(\mathop {\lim }\limits_{x \to + \infty } {\left( {\frac{1}{3}} \right)^x} = 0;\,\,\mathop {\lim }\limits_{x \to - \infty } {\left( {\frac{1}{3}} \right)^x} = + \infty \)
Hàm số \(y = {\left( {\frac{1}{3}} \right)^x}\) nghịch biến trên toàn R
Bảng biến thiên của hàm số:
Đồ thị hàm số: