c/m các số sau là số chính phương với mọi n thuộc N
a,n2+4n+4
b,n.(n+2)+1
c,(n+1).(n+2)+n+2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Đặt A = 20184n + 20194n + 20204n
= (20184)n + (20194)n + (20204)n
= (....6)n + (....1)n + (....0)n
= (...6) + (...1) + (...0) = (....7)
=> A không là số chính phương
b) Đặt 1995 + n = a2 (1)
2014 + n = b2 (2)
a;b \(\inℤ\)
=> (2004 + n) - (1995 + n) = b2 - a2
=> b2 - a2 = 9
=> b2 - ab + ab - a2 = 9
=> b(b - a) + a(b - a) = 9
=> (b + a)(b - a) = 9
Lập bảng xét các trường hợp
b - a | 1 | 9 | -1 | -9 | 3 | -3 |
b + a | 9 | 1 | -9 | -1 | -3 | 3 |
a | -4 | 4 | 4 | -4 | -3 | 3 |
b | 5 | 5 | -5 | -5 | 0 | 0 |
Từ a;b tìm được thay vào (1)(2) ta được
n = -1979 ; n = -2014 ;
a, Vì n \(\in\)N => n2 là số chính phương
mà 9 = 32 là số chính phương
=> n2 + 9 là số chính phương.
Vậy A = n2 + 9 là số chính phương.
CHÚC BẠN HỌC TỐT!!!!
a,n2+4n+4 = n^2 + 2n + 2n + 4= n(n+2) +2(n+2) = (n+2)^2 => kết luận ..........
b,n.(n+2)+1 = n^2 + 2n + 1 = n^2 + n+ n + 1 = n(n+1)+1(n+1) = (n+1)^2 => kết luận ...............
c,(n+1).(n+2)+n+2 = n(n+2)+n+2 + n + 2 = n^2 + 2n + 2n + 4 = n(n+2) + 2(n+2) = (n+2)^2 => kết luận .....