112 - 50 = ...................
ai nhanh nhất mk sẽ k
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=3+3^2+3^3+3^4+...+3^{50}.\)
\(=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{49}+3^{50}\right)\)
\(=\left(3\cdot1+3\cdot3\right)+\left(3^3\cdot1+3^3\cdot3\right)+...+\left(3^{49}\cdot1+3^{49}\cdot3\right)\)
\(=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{49}\left(1+3\right)\)
\(=3\cdot4+3^3\cdot4+...+3^{49}\cdot4\)
\(=4\cdot\left(3+3^3+...+3^{49}\right)⋮4\)
\(\Rightarrow A⋮4\)
Học tốt ^3^
Trả lời:
\(A=3+3^2+3^3+3^4+...+3^{50}\)
\(A=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{49}+3^{50}\right)\)
\(A=3.\left(1+3\right)+3^3.\left(1+3\right)+...+3^{49}.\left(1+3\right)\)
\(A=\left(3+3^3+...+3^{49}\right).4\)
Vì \(3+3^3+...+3^{49}\inℕ\)
Mà \(4⋮4\)
\(\Rightarrow\)\(\left(3+3^3+...+3^{49}\right).4⋮4\)
Hay \(A⋮4\left(đpcm\right)\)
Vậy\(A⋮4\)
Hok tốt!
Vuong Dong Yet
112 - 50 = 62 nha
112-50=62
mình nhanh nhất