K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

dễ thôi

ta có:

\(\frac{a}{1+b^2c}=a-\frac{ab^2c}{1+b^2c};\frac{b}{1+c^2d}=b-\frac{bc^2d}{1+c^2d};\frac{c}{1+d^2a}=c-\frac{cd^2a}{1+d^2a};\frac{d}{1+a^2b}=d-\frac{da^2b}{1+a^2b}\)

áp dụng cauchy ta có:

\(b^2c+1\ge2b\sqrt{c};c^2d+1\ge2c\sqrt{d};d^2a+1\ge2d\sqrt{a};a^2b+1\ge2a\sqrt{b}\)

\(=4-\frac{ab\sqrt{c}+bc\sqrt{d}+cd\sqrt{a}+da\sqrt{b}}{2}\)

theo ông cauchy thì 

\(ab\sqrt{c}\le\frac{ab\left(c+1\right)}{2};bc\sqrt{d}\le\frac{bc\left(d+1\right)}{2};cd\sqrt{a}\le\frac{cd\left(a+1\right)}{2};da\sqrt{b}\le\frac{da\left(b+1\right)}{2}\)

\(\Rightarrow4-\frac{ab\sqrt{c}+bc\sqrt{d}+cd\sqrt{a}+da\sqrt{b}}{2}\ge4-\frac{\left(abc+bcd+cda+dab\right)+\left(ab+bc+cd+da\right)}{4}\)

vẫn là ông cauchy nói là \(abc+bcd+cda+dab\le\frac{1}{16}\left(a+b+c+d\right)^3=4\)

\(ab+bc+cd+da=\left(b+d\right)\left(a+c\right)\le\frac{\left(a+b+c+d\right)^2}{4}=4\)

\(\Rightarrow4-\frac{\left(abc+bcd+cda+dab\right)+\left(ab+bc+cd+da\right)}{4}\ge4-\frac{4+4}{4}=2\)

\(\Rightarrow\frac{a}{1+b^2c}+\frac{b}{1+c^2d}+\frac{c}{1+d^2a}+\frac{d}{1+a^2b}\ge2\left(Q.E.D\right)\)

dấu bằng xảy ra khi a=b=c=d=1

\(\Rightarrow\frac{a}{1+b^2c}+\frac{b}{1+c^2d}+\frac{c}{1+d^2a}+\frac{d}{1+a^2b}\ge\left(a+b+c+d\right)-\frac{ab^2c}{2b\sqrt{c}}-\frac{bc^2d}{2c\sqrt{d}}-\frac{cd^2a}{2d\sqrt{a}}-\frac{da^2b}{2a\sqrt{b}}\)

 Kiệt đừng ghi dòng cuối nhé,ko bít nó ở mô ra

25 tháng 9 2017

Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:

\(VT=\dfrac{a}{b+2c+3d}+\dfrac{b}{c+2d+3a}+\dfrac{c}{d+2a+3b}+\dfrac{d}{a+2b+3c}\)

\(=\dfrac{a^2}{ab+2ac+3ad}+\dfrac{b^2}{bc+2bd+3ab}+\dfrac{c^2}{cd+2ac+3bc}+\dfrac{d^2}{ad+2bd+3cd}\)

\(\ge\dfrac{\left(a+b+c+d\right)^2}{4\left(ab+ad+bc+bd+ca+cd\right)}\ge\dfrac{\left(a+b+c+d\right)^2}{\dfrac{3}{2}\left(a+b+c+d\right)^2}=\dfrac{2}{3}\)

*Chứng minh \(4\left(ab+ad+bc+bd+ca+cd\right)\le\dfrac{3}{2}\left(a+b+c+d\right)^2\)

\(\Leftrightarrow\left(a-b\right)^2+\left(a-d\right)^2+\left(b-c\right)^2+\left(b-d\right)^2+\left(a-c\right)^2+\left(c-d\right)^2\ge0\)

25 tháng 9 2017

Làm lại lun ._.

22 tháng 6 2016

tìm j ???

22 tháng 6 2016

Ta có: a/2bxb/2cxc/2dxd/2a=1/2^4=1/16

mà các phân số trên = nhau => a=b=c=d