xy-x-y=0mọi người giải giúp mình nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1,x^2+4x+4=0\\ \Rightarrow\left(x+2\right)^2=0\\ \Rightarrow x+2=0\\ \Rightarrow x=-2\\ 2,x^2+4x+4=0\\ \Rightarrow\left(x+2\right)^2=0\\ \Rightarrow x+2=0\\ \Rightarrow x=-2\\ 3,\left(x+1\right)^2+2\left(x+1\right)=0\\ \Rightarrow\left(x+1\right)\left(x+1+2\right)=0\\ \Rightarrow\left(x+1\right)\left(x+3\right)=0\\ \Rightarrow\left[{}\begin{matrix}x+1=0\\x+3=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=-1\\x=-3\end{matrix}\right.\)
x2+4x+4=0
(x+2)2=0
x+2=0
x=+-2
câu 1 giống câu 2
(x+1)2+2(x+1)=0
(x+1+2)(x+1)=0
Th1: x+3=0 Th2: x+1=0
x=-3 x=-1
vậy ...
Ta có: \(\left(x-\dfrac{1}{5}\right)^{2004}\ge0\forall x\)
\(\left(y+0.4\right)^{100}\ge0\forall y\)
\(\left(z-3\right)^{678}\ge0\forall z\)
Do đó: \(\left(x-\dfrac{1}{5}\right)^{2004}+\left(y+0.4\right)^{100}+\left(z-3\right)^{678}\ge0\forall x,y,z\)
Dấu '=' xảy ra khi
\(\left\{{}\begin{matrix}x-\dfrac{1}{5}=0\\y+0.4=0\\z-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{5}\\y=-\dfrac{2}{5}\\z=3\end{matrix}\right.\)
Vậy: (x,y,z)=\(\left(\dfrac{1}{5};-\dfrac{2}{5};3\right)\)
`<=> x(y - 2) + y - 2 + 3 = 0`
`<=> (x+1)(y-2) + 3 = 0`
`<=> (x+1)(y - 2) = -3`
`=> x + 1 in Ư(3)`
Đến đây chắc bạn tự làm được rồi ha, xét các ước của `x` và `y`.
a: =>3x+3=4x-4
=>-x=-7
hay x=7(nhận)
b: (x-1)(x-3)=0
=>x-1=0 hoặc x-3=0
=>x=1 hoặc x=3
c: 2(x-1)+x=0
=>2x-2+x=0
=>3x-2=0
hay x=2/3
a, ĐKXĐ : x ≠ 1 ; x ≠ -1
\(\Rightarrow3\left(x+1\right)=4\left(x-1\right)\)
\(\Leftrightarrow3x+3=4x-4\)
\(\Leftrightarrow-x=-7\)
\(\Leftrightarrow x=7\left(N\right)\)
b,
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\)
c,
\(\Leftrightarrow2x-2+x=0\)
\(\Leftrightarrow3x=2\)
\(\Leftrightarrow x=\dfrac{2}{3}\)
\(\left(3x-1\right)^2.\left(x+5\right)^2=0\)
\(\Rightarrow\left[{}\begin{matrix}3x-1=0\\x+5=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\\x=-5\end{matrix}\right.\)
\(\Leftrightarrow2\left(x^2-\dfrac{3}{2}x+\dfrac{5}{2}\right)=0\\ \Leftrightarrow2\left(x-2\cdot\dfrac{3}{4}x+\dfrac{9}{16}+\dfrac{31}{16}\right)=0\\ \Leftrightarrow2\left(x-\dfrac{3}{4}\right)^2+\dfrac{31}{8}=0\\ \Leftrightarrow x\in\varnothing\left[2\left(x-\dfrac{3}{4}\right)^2+\dfrac{31}{8}\ge\dfrac{31}{8}>0\right]\)
\(a,\Leftrightarrow x=7-4=3\\ b,\Leftrightarrow2x=-18+5=-13\\ \Leftrightarrow x=-\dfrac{13}{2}\\ c,\Leftrightarrow x-21=10\\ \Leftrightarrow x=31\\ d,\Leftrightarrow-12-x+19=0\\ \Leftrightarrow7-x=0\\ \Leftrightarrow x=7\)
a, <=> x=7-4
<=> x=3
b, 2x= -18 +5
<=>2x=-13
<=> x= -13/2
c, <=> x -21=-10
<=> x= -10 +21
<=> x=11
d, <=> -12+19 -x=0
<=> 7-x=0
<=> x=7
bn ko nói là tìm x hay y hay xy à
`xy-x-y=0`
`<=>xy-x-y+1=1`
`<=> x(y-1)-(y-1)=1`
`<=> (y-1)(x-1)=1`
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}y-1=1\\x-1=1\end{matrix}\right.\\\left\{{}\begin{matrix}y-1=-1\\x-1=-1\end{matrix}\right.\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}y=2\\x=2\end{matrix}\right.\\\left\{{}\begin{matrix}y=0\\x=0\end{matrix}\right.\end{matrix}\right.\)