2^10+2^11+2^12 chia hết cho 28
đề bài : chứng minh chia hết
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2^{10}+2^{11}+2^{12}\)
\(=2^9.\left(2+2^2+2^3\right)\)
\(=2^9.14\)
\(=2^8.28\)
Ta có: \(28⋮28\)
\(\Rightarrow2^8.28⋮28\)
\(\Rightarrow2^{10}+2^{11}+2^{12}⋮28\)
đpcm
\(8^{10}-8^9-8^8\)
\(=8^8.\left(8^2-8-1\right)\)
\(=8^8.55\)
Ta có: \(55⋮55\)
\(\Rightarrow8^8.55⋮55\)
\(\Rightarrow8^{10}-8^9-8^8⋮55\)
đpcm
Tham khảo nhé~
\(2^{10}+2^{11}+2^{12}=2^8\left(4+8+16\right)=2^8\cdot28\)
vi 28 chia het cho 28 nen 28*28 chia het cho 28 suy ra 210+211+212 chia het cho 28
tg tu cau b nha
b)=3^1+(3^2+3^3+3^4)+(3^5+3^6+3^7)+....+(3^58+3^59+3^60)
=3^1+(3^2.1+3^2.3+3^2.9)+(3^5.1+3^5.3+3^5.9)+......+(3^58.1+3^58.3+3^58.9)
=3^1+3^2.(1+3+9)+3^5.(1+3+9)+.....+3^58.(1+3+9)
=3+3^2.13+3^5.13+.........+3^58.13
=3.13.(3^2+3^5+....+3^58)
vi tich tren co thua so 13 nen tich do chia het cho 13
=
bai1
a) A=(31+32)+(33+34)+...+(359+360)
=(3^1.1+3^1.3)+...+(3^59.1+3^59.2)
=3^1.(1+3)+...+3^59.(1+3)
=3^1.4+....+3^59.4
=4.(3^1+...+3^59)
vi tich tren co thua so 4 nen tich do chia het cho 4
ab+cd+eg = 10a+b+d+10e+g
=10(a+c+e)+b+d+g chia hết cho 11 thì
a+c+e chia hết 11
b+d+g chia hết 11
\(2^{10}+2^{11}+2^{12}=2^8\left(2^2+2^3+2^4\right)=2^8.\left(4+8+16\right)=2^8.28⋮28\left(đpcm\right)\)
\(2^{10}+2^{11}+2^{12}⋮28\\ \Rightarrow2^8+\left(4+8+16\right)\\ \Rightarrow2^8+28\\ \)
\(\)Vì \(28⋮28\\ \Rightarrow2^{10}+2^{11}+2^{12}⋮28.\)