A là số tự nhiên lẻ không chia hết cho 5.
Chứng minh rằng có 1 số chia hết cho A gồm chữ số 9
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a lẻ nên a=2k+1
(a-1)(a+1)
\(=\left(2k+1-1\right)\left(2k+1+1\right)\)
\(=2k\left(2k+2\right)\)
\(=4k\left(k+1\right)\)
Vì k;k+1 là hai số tự nhiên liên tiếp
nên \(k\left(k+1\right)⋮2\)
=>\(4k\left(k+1\right)⋮\left(4\cdot2\right)=8\)
=>\(\left(a-1\right)\left(a+1\right)⋮8\)
Vì a không chia hết cho 3 nên a=3c+1 hoặc a=3c+2
TH1: a=3c+1
\(\left(a-1\right)\left(a+1\right)\)
\(=\left(3c+1-1\right)\left(3c+1+1\right)\)
\(=3c\left(3c+2\right)⋮3\left(1\right)\)
TH2: a=3c+2
\(\left(a-1\right)\left(a+1\right)\)
\(=\left(3c+2-1\right)\left(3c+2+1\right)\)
\(=\left(3c+3\right)\left(3c+1\right)\)
\(=3\left(c+1\right)\left(3c+1\right)⋮3\left(2\right)\)
Từ (1) và (2) suy ra \(\left(a-1\right)\left(a+1\right)⋮3\)
mà \(\left(a-1\right)\left(a+1\right)⋮8\)
và ƯCLN(3;8)=1
nên \(\left(a-1\right)\left(a+1\right)⋮\left(3\cdot8\right)=24\)
d) Ta có: n + 6 chia hết cho n+1
n+1 chia hết cho n+1
=> [(n+6) - (n+1)] chia hết cho n+1
=> (n+6 - n - 1) chia hết cho n + 1
=> 5 chia hết cho n+1
=> n+1 thuộc { 1; 5 }
Nếu n+1 = 1 thì n = 1-1=0
Nếu n+1=5 thì n= 5-1=4.
Vậy n thuộc {0;4}
e) Ta có: 2n+3 chia hết cho n-2 (1)
n-2 chia hết cho n-2 => 2(n-2) chia hết cho n-2 => 2n - 4 chia hết cho n-2 (2)
Từ (1) và (2) => [(2n+3) - (2n-4)] chia hết cho n-2
=> (2n+3 - 2n +4) chia hết cho n-2
=> 7 chia hết cho n-2
Sau đó xét các trường hợp tương tự như phần d.