Rút gọn: (\(x>-2\))
\(4x-\sqrt{8}+\frac{\sqrt{x^3+2x^2}}{\sqrt{x+2}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\left(\sqrt{x}-\sqrt{y}\right)^2\)
\(=\frac{\left(\sqrt{x}+\sqrt{y}\right)\left(x-\sqrt{xy}+y\right)}{\sqrt{x}+\sqrt{y}}-\left(x-2\sqrt{xy}+y\right)\)
\(=x-\sqrt{xy}+y-x+2\sqrt{xy}-y=\sqrt{xy}\)
b) \(\sqrt{\frac{x-2\sqrt{x}+1}{x+2\sqrt{x}+1}}=\sqrt{\frac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}+1\right)^2}}=\frac{\left|\sqrt{x}-1\right|}{\sqrt{x}+1}\)
c) \(4x-\sqrt{8}+\frac{\sqrt{x^3+2x^2}}{\sqrt{x+2}}=4x-\sqrt{8}+\frac{\sqrt{x^2\left(x+2\right)}}{x+2}=4x-\sqrt{8}+x=5x-\sqrt{8}\)
ĐK \(\hept{\begin{cases}x\ge0\\x\ne1;x\ne2\end{cases}}\)
Ta có \(P=\frac{x\left(\sqrt{x}-2\right)-\left(\sqrt{x}-2\right)}{\left(x\sqrt{x}+x\right)-\left(x+\sqrt{x}\right)-2\left(\sqrt{x}+1\right)}+\frac{x\left(\sqrt{x}+2\right)-\left(\sqrt{x}+2\right)}{\left(x\sqrt{x}-x\right)+\left(x-\sqrt{x}\right)-2\left(\sqrt{x}-1\right)}\)
\(=\frac{\left(\sqrt{x}-2\right)\left(x-1\right)}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}-2\right)}+\frac{\left(\sqrt{x}+2\right)\left(x-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}-2\right)}\)
\(=\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-2\right)}+\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)^2\left(\sqrt{x}+2\right)}\)
\(=\frac{\sqrt{x}-1}{\sqrt{x}+1}+\frac{\sqrt{x}+1}{\sqrt{x}-1}=\frac{x-2\sqrt{x}+1+x+2\sqrt{x}+1}{x-1}\)
\(=2.\frac{x+1}{x-1}\)
đáp án nè ko bít có đúng đâu \(\frac{-2\sqrt{x}}{-6\sqrt[]{x}}\)
P = \(\left(\frac{\sqrt{x}-4x}{1-4x}-1\right):\left(\frac{1+2x}{1-4x}+\frac{2\sqrt{x}}{2\sqrt{x}-1}-1\right)\)
P = \(\frac{\sqrt{x}-4x-1+4x}{1-4x}:\left(\frac{1+2x-2\sqrt{x}\left(2\sqrt{x}+1\right)-1+4x}{1-4x}\right)\)
P = \(\frac{\sqrt{x}-1}{1-4x}\cdot\frac{1-4x}{1+2x-4x-2\sqrt{x}-1+4x}\)
P = \(\frac{\sqrt{x}-1}{2x-2\sqrt{x}}\)
P = \(\frac{\sqrt{x}-1}{2\sqrt{x}\left(\sqrt{x}-1\right)}=\frac{1}{2\sqrt{x}}\)
b) \(4x-\sqrt{8}+\frac{\sqrt{x^3+2x^2}}{\sqrt{x+2}}\)
\(=4x-\sqrt{8}+\frac{\sqrt{x^2\left(x+2\right)}}{x+2}\)
\(=4x-\sqrt{8}+\frac{x\left(x+2\right)}{x+2}\)
\(=4x-\sqrt{8}+x\)
\(=5x-\sqrt{8}\)
Với \(x=-\sqrt{2}\) ta có:
\(5x-\sqrt{8}=5\cdot\left(-\sqrt{2}\right)-\sqrt{4\cdot2}=-5\sqrt{2}-2\sqrt{2}=-7\sqrt{2}\)
\(4x-\sqrt{8}+\frac{\sqrt{x^3+2x^2}}{\sqrt{x+2}}\)
\(=4x-\sqrt{8}+\frac{\sqrt{x^2}.\sqrt{x+2}}{\sqrt{x+2}}=4x-\sqrt{8}+|x|\)
có còn rút gọn đc nữa không nhỉ
Thanks Nghĩa nha, làm như thế là được rồi^^