Cho x, y thoả mãn điều kiện:
x+y=3
x.y=-10
Tính giá trị biểu thức
\(x^2-2xy+y^2\)
3 ticks nhé
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(K=\left(4xy+\dfrac{1}{4xy}\right)+\left(\dfrac{1}{x^2+y^2}+\dfrac{1}{2xy}\right)+\dfrac{5}{4xy}\)
\(K\ge2\sqrt{\dfrac{4xy}{4xy}}+\dfrac{4}{x^2+y^2+2xy}+\dfrac{5}{\left(x+y\right)^2}\ge2+4+5=11\)
\(K_{min}=11\) khi \(x=y=\dfrac{1}{2}\)
\(x+y+2xy=\dfrac{15}{2}\)\(\Rightarrow\dfrac{15}{2}\le\left(x+y\right)+\dfrac{\left(x+y\right)^2}{2}\)
\(\Leftrightarrow\left(x+y\right)^2+2\left(x+y\right)-15\ge0\)
\(\Leftrightarrow\left(x+y+5\right)\left(x+y-3\right)\ge0\)
\(\Leftrightarrow x+y\ge3\) (vì \(x+y+5>0\) với mọi x,y dương)
\(\Rightarrow P_{min}=3\)
Dấu = xảy ra <=> \(x=y=\dfrac{3}{2}\)
\(P=\dfrac{6x+6y+2xy}{2}=\dfrac{6x+6y+2xy+10-10}{2}\)
\(=\dfrac{6x+6y+2xy+2\left(x^2+y^2\right)+6}{2}-5\)
\(=\dfrac{\left(x+y+2\right)^2+\left(x+1\right)^2+\left(y+1\right)^2}{2}-5\ge-5\)
\(P_{min}=-5\) khi \(x=y=-1\)
\(10x^2+\frac{1}{x^2}+\frac{y^2}{4}=20\)
\(=>\left(x^2+\frac{1}{x^2}\right)+\left(9x^2+\frac{y^2}{4}\right)=20\)
\(=>\left(x+\frac{1}{x}\right)^2+\left(3x+\frac{y}{2}\right)^2=20\)
Ta có \(x+\frac{1}{x}\ge2\sqrt{\frac{x.1}{x}}\ge2\)dấu = xảy ra khi x=1
=> y=6
=> MinP=6
Mình nghxi zậy
Ta có : (x+y)2=9
=>x2+2xy+y2=9
Trừ 2 vế cho 4xy
=>x2-2xy+y2=9-4xy
mà xy=-10
=>x2-2xy+y2=9-(4*-10)=49