tìm A thuộc z để các số hữu tỉ sau là số nguyên A=x+2/x+1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A là số nguyên `<=> -2 vdots (x+1)`
`<=> x+1 \in {-2;2;-1;1}`
`<=> x \in {-3;1;-2;0}
B là số nguyên `<=>2x+5 vdots x+1`
`<=> (2x+2)+3 vdots x+1`
`<=> 3 vdots x+1`
`<=> x+1 \in {-3;3;-1;1}`
`<=> x \in {-4;2;-2;0}`
a) \(F=\frac{3x-2}{x+3}\)là số nguyên
\(\Leftrightarrow3x-2⋮x+3\)
\(\Leftrightarrow3x+9-11⋮x+3\)
\(\Leftrightarrow3\left(x+3\right)-11⋮x+3\)
\(\Leftrightarrow11⋮x+3\)\(\Leftrightarrow x+3\in\left\{-11;-1;1;11\right\}\)
\(\Leftrightarrow x\in\left\{-14;-4;-2;8\right\}\)
b) \(\frac{x^2-2x+4}{x+1}\)là số nguyên
\(\Leftrightarrow x^2-2x+4⋮x+1\)
\(\Leftrightarrow x^2+x-3x-3+7⋮x+1\)
\(\Leftrightarrow x\left(x+1\right)-3\left(x+1\right)+7⋮x+1\)
\(\Leftrightarrow\left(x-3\right)\left(x+1\right)+7⋮x+1\)
\(\Leftrightarrow7⋮x+1\)\(\Leftrightarrow x+1\in\left\{-7;-1;1;7\right\}\)
\(\Leftrightarrow x\in\left\{-8;-2;0;6\right\}\)
a: Để M là số nguyên thì 5 chia hết cho căn a+1
=>căn a+1 thuộc {1;5}
=>a thuộc {0;4}
b: Khi a=4/9 thì \(M=1+\dfrac{5}{\dfrac{2}{3}+1}=1+5:\dfrac{5}{3}=1+3=4\)
=>M là số nguyên
c: \(\sqrt{a}+1>=1\)
=>\(\dfrac{5}{\sqrt{a}+1}< =5\)
=>M<=6
\(1< =\dfrac{5}{\sqrt{a}+1}< =5\)
=>2<=M<=6
M=2 khi \(\dfrac{5}{\sqrt{a}+1}+1=2\)
=>\(\dfrac{5}{\sqrt{a}+1}=1\)
=>căn a+1=5
=>căn a=4
=>a=16
M=3 khi \(\dfrac{5}{\sqrt{a}+1}=2\)
=>căn a+1=5/2
=>căn a=3/2
=>a=9/4
M=4 thì \(\dfrac{5}{\sqrt{a}+1}=3\)
=>căn a+1=5/3
=>căn a=2/3
=>a=4/9
\(M=5\Leftrightarrow\dfrac{5}{\sqrt{a}+1}=4\)
=>căn a+1=5/4
=>căn a=1/4
=>a=1/16
\(x=\frac{3}{4a+1}\)
Ta có U(3)={1;3;-1;-3}
mà \(x\in\)N*
=>x={1;3}
TH1: 4a+1 =1
4a=1-1
4a=0
a=0:4
a=0
TH2: 4a+1 =3
4a=3-1
4a=2
a=2:4
a=\(\frac{2}{4}\)
a=\(\frac{1}{2}\)
Vậy a={0;\(\frac{1}{2}\)}
a,Tìm x để A là số hữu tỉ.
để A là số hữu tỉ => x - 1 \(\ne\)0
=> x \(\ne\)1
vậy x thuộc Z và x \(\ne\) 1
`a,`
`A=3/(x-1)`
Để `A` là số hữu tỉ
`->x-1 \ne 0`
`->x\ne 0+1`
`-> x \ne 1`
Vậy `x \ne 1` để `A` là số hữu tỉ
`b,`
`A=3/(x-1) (x \ne 1)`
Để `A` thuộc Z
`->3` chia hết cho `x-1`
`->x-1` thuộc ước của `3 = {1;-1;3;-3}`
`->x` thuộc `{2;0;4;-2}` (Thỏa mãn)
Vậy `x` thuộc `{2; 0; 4;-2}` để `A` thuộc Z
`c,`
`A=3/(x-1) (x \ne 1)`
Để `A` lớn nhất
`->3/(x-1)` lớn nhất
`->x-1` nhỏ nhất
`->x-1=1` (Do `1` là số nguyên dương nhỏ nhất)
`->x=2` (Thỏa mãn)
Với `x=2`
`->A=3/(2-1)=3/1=3`
Vậy `max A=3` khi `x=2`
`d,`
`A=3/(x-1) (x \ne 1)`
Để `A` nhỏ nhất
`->3/(x-1)` nhỏ nhất
`->x-1` lớn nhất
`->x-1=-1` (Do `-1` là số nguyên âm lớn nhất)
`->x=0`
Với `x=0`
`-> A=3/(0-1)=3/(-1)=-3`
Vậy `min A=-3` khi `x=0`
\(A=\dfrac{x+2}{x+1}=1+\dfrac{1}{x+1}\)
Để A nguyên :
\(x+1\inƯ\left(1\right)\\ Ư\left(1\right)=\left\{1;-1\right\}\\ \Rightarrow\left\{{}\begin{matrix}x+1=1\\x+1=-1\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)
Bài mình mới đăng á giúp mình với