1.2.3.....9+999-9 mũ 3 chia hết cho 9 không
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,3A=3^2+3^3+...+3^{101}\\ \Rightarrow3A-A=3^2+3^3+...+3^{101}-3-3^2-...-3^{100}\\ \Rightarrow2A=3^{101}-3\\ \Rightarrow A=\dfrac{3^{101}-3}{2}\)
\(b,A=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{99}+3^{100}\right)\\ A=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{99}\left(1+3\right)\\ A=\left(1+3\right)\left(3+3^3+...+3^{99}\right)\\ A=4\left(3+3^3+...+3^{99}\right)⋮4\)
\(A=3+\left(3^2+3^3+...+3^{100}\right)\\ A=3+3^2\left(1+3+...+3^{100}\right)\\ A=3+9\left(1+3+...+3^{100}\right).chia.9.dư.3\\ \Rightarrow A⋮̸9\)
a) rút gọn a
a = 3 + 3^3 + 3^2 + .. + 3^100
3a = 3^2 + 3^3 + .. + 3^101
3a - a = (3^2 + 3^3 + .. + 3^101) - (3 + 3^2 + .. + 3^100)
2a = 3^301 - 3
a = 3^101 - 3/2
b) chứng minh a chia hết cho 4 và k chia hết cho 9
a = 3 + 3^2 + .. + 3^100
a = (3 + 3^2) + .. + (3^99 + 3^100)
a = 3 (1 + 3) + .. + 3^99 (1 + 3)
a = 3.4 + .. + 3^99.4
a = (3 + .. + 3^99).4 ⋮ 4
vì 9 ⋮̸4
=> a ⋮̸9
Xem cách làm câu (b);(c);(d)
Bạn tham khảo:
Câu hỏi của Nguyễn Ngọc Thảo My - Toán lớp 7 - Học toán với OnlineMath
các bạn giúp mik nha
Cho A bằng 5^2021+1 phần 5^2022+1 ; B bằng 5^2020+1 phần 5^2021+1. Hãy so sánh A và B
Bài 4:
a chia 11 dư 5 dạng tổng quát của a là:
\(a=11k+5\left(k\in N\right)\)
b chia 11 dư 6 dạng tổng quát của b là:
\(b=11k+6\left(k\in N\right)\)
Nên: \(a+b\)
\(=11k+5+11k+6\)
\(=\left(11k+11k\right)+\left(5+6\right)\)
\(=k\cdot\left(11+11\right)+11\)
\(=22k+11\)
\(=11\cdot\left(2k+1\right)\)
Mà: \(11\cdot\left(2k+1\right)\) ⋮ 11
\(\Rightarrow a+b\) ⋮ 11
Bài 1: Mình làm rồi nhé !
Bài 2:
a) Dạng tổng quát của A là:
\(a=36k+24\left(k\in N\right)\)
b) a chia hết cho 6 vì:
Ta có: \(36k\) ⋮ 6 và 24 ⋮ 6
\(\Rightarrow a=36k+24\) ⋮ 6
c) a không chia hết cho 9 vì:
Ta có: \(36k\) ⋮ 9 và 24 không chia hết cho 9
\(\Rightarrow a=36k+24\) không chia hết cho 9
A=2^1(1+2)+2^3*(2+1)+2^5(2+1)+2^7*(2+1)+2^9*(2+1)=3*(2+2^3+2^5+2^7+2^9) chia hết cho 3
Ta thấy \(1.2.3...9⋮9\)
\(999⋮9\)
\(9^3⋮9\)
Từ tất cả những điều này, ta suy ra \(1.2.3...9+999-9^3⋮9\)
(áp dụng tính chất: Nếu \(a,b,c\inℤ\) và \(a,b,c⋮9\) thì \(a+b-c⋮9\))