K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 6 2017

1) 3-81x3

=3-3.(3x)3

=3[13-(3x)3)]

=3(1-3x)(1+3x+9x2)

2) 250x3y3-2

=2(125x3y3-1)

=2[(5xy)3-13]

=2(5xy-1)(25x2y2+5xy+1)

3) a4+4b4

=[(a2)2+4a2b2+(2b2)]-4a2b2

=(a2+2b2)-(2ab)2

=(a2+2b2-2ab)(a2+2b2+2ab)

4) x5+x+1

=x5-x2+x2+x+1

=x2(x3-13)+(x2+x+1)

=x2(x-1)(x2+x+1)+(x2+x+1)

=(x2+x+1)[x2(x-1)+1]

=(x2+x+1)(x3-x2+1)

Chúc bn học giỏi nhoa!!!

bn yêu văn à 

giống susu  nek 

tk nha 

1: =(a+b)^3+c^3-3ab(a+b)-3acb

=(a+b+c)[(a+b)^2-c(a+b)+c^2]-3ab(a+b+c)

=(a+b+c)(a^2+2ab+b^2-ac-bc+c^2-3ab)

=(a+b+c)(a^2+b^2+c^2-ab-bc-ac)

 

Ta có: \(1+6x-6x^2-x^3\)

\(=-x^3-6x^2+6x+1\)

\(=\left(-x^3+1\right)-6x\left(x-1\right)\)

\(=-\left(x-1\right)\left(x^2+x+1\right)-6x\cdot\left(x-1\right)\)

\(=\left(x-1\right)\left(-x^2-x-1-6x\right)\)

\(=-\left(x-1\right)\left(x^2+7x+1\right)\)

17 tháng 8 2021

\(1+6x-6x^2-x^3\)

= (1-x^3)+(6x-6x^2)

=(1-x)(1+x+x^2)+6x(1-x)

=(1-x)( 1+ x+ x^2 + 6x)

=(1-x)(1+x^2 +7x)

Đây bạn ơi!

26 tháng 10 2021

1. Ta có: hằng đẳng thức: \(x^3+y^3+z^3=3xyz\) nếu x+y+z=0

đặt b-c=x, c-a=y, a-b=z⇒x+y+z=0

 \(\Rightarrow\left(b-c\right)^3+\left(c-a\right)^3+\left(a-b\right)^3=3\left(a-b\right)\left(c-a\right)\left(b-c\right)\)

2. \(x^3+y^3+z^3-3xyz=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)+3xyz-3xyz=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)

3. Tham khảo: https://hoc247.net/hoi-dap/toan-8/phan-tich-da-thuc-x-y-5-x-5-y-5-thanh-nhan-tu-faq447273.html

26 tháng 10 2021

\(5,=x^3+2x^2y-7x^2y-14xy^2\\ =x^2\left(x+2y\right)-7xy\left(x+2y\right)\\ =x\left(x-7y\right)\left(x+2y\right)\)

26 tháng 11 2021

\(1,x^2-16y^2=\left(x-4y\right)\left(x+4y\right)\)

\(2,21x-21y+ax-ay=21\left(x-y\right)+a\left(x-y\right)=\left(21+a\right)\left(x-y\right)\)

\(3,x^3-2x^2+x=x\left(x^2-2x+1\right)=x\left(x+1\right)^2\)

2: \(=\left(1-2x\right)\left(1+2x\right)\)

 

22 tháng 8 2023

1) \(x^2-4xy+4y^2+xz-2yz\)

\(=\left(x^2-4xy+4y^2\right)+\left(xz-2yz\right)\)

\(=\left(x-2y\right)^2+z\left(x-2y\right)\)

\(=\left(x-2y\right)\left(x-2y+z\right)\)

2) \(\left(x-y\right)^3+\left(x+y\right)^3\)

\(=\left[\left(x-y\right)+\left(x+y\right)\right]\left[\left(x-y\right)^2-\left(x-y\right)\left(x+y\right)+\left(x+y\right)^2\right]\)

\(=\left(x-y+x+y\right)\left(x^2-2xy+y^2-x^2+y^2+x^2+2xy+y^2\right)\)

\(=2x\left(x^2+3y^2\right)\)

22 tháng 8 2023

mik cảm ơn

31 tháng 7 2023

\(\dfrac{1}{2}x^3+4\)

\(=\dfrac{1}{2}\left(x^3+8\right)\)

\(=\dfrac{1}{2}\left(x^3+2^3\right)\)

\(=\dfrac{1}{2}\left(x+2\right)\left(x^2-2\cdot x+2^2\right)\)

\(=\dfrac{1}{2}\left(x+2\right)\left(x^2-2x+4\right)\)

=1/2(x^3+8)

=1/2(x+2)(x^2-2x+4)

21 tháng 8 2021

undefined

1: \(x^2-3x+2=\left(x-1\right)\left(x-2\right)\)

2: \(x^2-x-6=\left(x-3\right)\left(x+2\right)\)

3: \(x^2+7x+12=\left(x+3\right)\left(x+4\right)\)

21 tháng 8 2021

1) \(x^2-3x+2=\left(x^2-x\right)-\left(2x-2\right)=x\left(x-1\right)-2\left(x-1\right)=\left(x-1\right)\left(x-2\right)\)

2) \(x^2-x-6=\left(x^2-3x\right)+\left(2x-6\right)=x\left(x-3\right)+2\left(x-2\right)=\left(x-2\right)\left(x-3\right)\)

3) \(x^2+7x+12=\left(x^2+3x\right)+\left(4x+12\right)=x\left(x+3\right)+4\left(x+3\right)=\left(x+3\right)\left(x+4\right)\)

1: \(x^2-3x+2=\left(x-1\right)\left(x-2\right)\)

2: \(x^2-x-6=\left(x-3\right)\left(x+2\right)\)

3: \(x^2+7x+12=\left(x+3\right)\left(x+4\right)\)

18 tháng 7 2021

a) \(x^2-2x-4y^2-4y=\left(x^2-4y^2\right)-\left(2x+4y\right)=\left(x-2y\right)\left(x+2y\right)-2\left(x+2y\right)=\left(x+2y\right)\left(x-2y-2\right)\)

b) \(x^3+2x^2+2x+1=\left(x+1\right)\left(x^2-x+1\right)+2x\left(x+1\right)=\left(x+1\right)\left(x^2-x+1+2x\right)=\left(x+1\right)\left(x^2+x+1\right)\)

c) \(x^3-4x^2+12x-27=x^3-3x^2-x^2+3x+9x-27=x^2\left(x-3\right)-x\left(x-3\right)+9\left(x-3\right)=\left(x-3\right)\left(x^2-x+9\right)\)

d) \(a^6-a^4+2a^3+2a^2=a^2\left(a^4-a^2+2a+2\right)=a^2\left[a^2\left(a-1\right)\left(a+1\right)+2\left(a+1\right)\right]=a^2\left(a+1\right)\left(a^3-a^2+2\right)=a^2\left(a+1\right)\left[a^3+a^2-2a^2+2\right]=a^2\left(a+1\right)\left[a^2\left(a+1\right)-2\left(a-1\right)\left(a+1\right)\right]=a^2\left(a+1\right)^2\left(a^2-2a+2\right)\)

a) Ta có: \(x^2-2x-4y^2-4y\)

\(=\left(x^2-4y^2\right)-\left(2x+4y\right)\)

\(=\left(x-2y\right)\left(x+2y\right)-2\left(x+2y\right)\)

\(=\left(x+2y\right)\left(x-2y-2\right)\)

b) Ta có: \(x^3+2x^2+2x+1\)

\(=\left(x^3+1\right)+2x\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2-x+1\right)+2x\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2+x+1\right)\)