K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 2 2020

1) Tìm GTNN : 

Ta có : \(\frac{x}{y+1}+\frac{y}{x+1}=\frac{x^2}{xy+x}+\frac{y^2}{xy+y}\ge\frac{\left(x+y\right)^2}{2xy+\left(x+y\right)}\ge\frac{1}{\frac{\left(x+y\right)^2}{2}+1}=\frac{1}{\frac{1}{2}+1}=\frac{2}{3}\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)

2) Áp dụng BĐT Svacxo ta có :

\(\frac{a^2}{1+b}+\frac{b^2}{1+c}+\frac{c^2}{1+a}\ge\frac{\left(a+b+c\right)^2}{3+a+b+c}=\frac{9}{6}=\frac{3}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=1\)

28 tháng 2 2020

2/ Áp dụng bđt Cô- si cho 2 số dương ta có :

\(\frac{a^2}{1+b}+\frac{1+b}{4}\ge2\sqrt{\frac{a^2}{1+b}\frac{1+b}{4}}=a\)

Tương tự ta có \(\frac{b^2}{1+c}+\frac{1+c}{4}\ge b;\frac{c^2}{1+a}+\frac{1+a}{4}\ge c\)

\(\Rightarrow\frac{a^2}{1+b}+\frac{b^2}{1+c}+\frac{c^2}{1+a}\ge a+b+c-\left(\frac{1+b}{4}+\frac{1+c}{4}+\frac{1+a}{4}\right)\)

\(\Rightarrow\frac{a^2}{1+b}+\frac{b^2}{1+c}+\frac{c^2}{1+a}\ge3-\frac{1}{4}\left(a+b+c\right)-\frac{3}{4}=3-\frac{1}{4}.3-\frac{3}{4}=\frac{3}{2}\)

Dấu "=" xảy ra <=> a=b=c=1 

4 tháng 10 2017

\(\frac{a^4}{a\left(b+c\right)}+\frac{b^4}{b\left(a+c\right)}+\frac{c^4}{c\left(a+b\right)}\)

ap dung bdt cauchy -schwaz dang engel ta co 

\(\frac{a^4}{a\left(b+c\right)}+\frac{b^4}{b\left(a+c\right)}+\frac{c^4}{c\left(a+b\right)}\ge\frac{\left(a^2+b^2+c^2\right)^2}{2\left(ab+bc+ac\right)}\)\(\)

ma \(a^2+b^2+c^2\ge ab+bc+ac\)

\(\Rightarrow VT\ge\frac{1}{2\left(a^2+b^2+c^2\right)}=\frac{1}{2}\)

dau =xay ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)

24 tháng 12 2019

a) \(\frac{a+b}{2}\ge\sqrt{ab}\)

\(\Leftrightarrow\frac{a^2+2ab+b^2}{4}-ab\ge0\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng \(\forall a,b\) )

=>đpcm

25 tháng 12 2019

Cô si

\(\frac{bc}{a}+\frac{ca}{b}\ge2\sqrt{\frac{bc}{a}\cdot\frac{ca}{b}}=2c\)

\(\frac{ca}{b}+\frac{ab}{c}\ge2\sqrt{\frac{ca}{b}\cdot\frac{ab}{c}}=2a\)

\(\frac{ab}{c}+\frac{bc}{a}\ge2\sqrt{\frac{ab}{c}\cdot\frac{bc}{a}}=2b\)

Cộng lại ta có:

\(2\left(\frac{bc}{a}+\frac{ca}{b}+\frac{ab}{c}\right)\ge2\left(a+b+c\right)\Rightarrowđpcm\)

28 tháng 11 2019

Bài này đăng nhiều trên OLM rồi, lời giải vắn tắt:

\(VT=\Sigma_{cyc}\frac{a}{1+b^2}=\Sigma_{cyc}\left(a-\frac{ab^2}{1+b^2}\right)=3-\Sigma_{cyc}\frac{ab^2}{1+b^2}\)

\(\ge3-\Sigma_{cyc}\frac{ab}{2}\ge3-\frac{\frac{\left(a+b+c\right)^2}{3}}{2}=\frac{3}{2}\)

Đẳng thức xảy ra khi a = b = c = 1

28 tháng 11 2019

Ta có: \(\frac{a}{1+b^2}=a-\frac{ab^2}{1+b^2}\ge a-\frac{ab^2}{2b}=a-\frac{ab}{2}\)(bđt cô - si)

Tương tự ta có: \(\frac{b}{1+c^2}\ge b-\frac{bc}{2}\);\(\frac{c}{1+a^2}\ge c-\frac{ca}{2}\)

Cộng từng vế của các bđt trên:

\(\frac{a}{1+b^2}\)\(+\frac{b}{1+c^2}\)\(+\frac{c}{1+a^2}\)\(\ge a+b+c-\frac{ab+bc+ca}{2}\)

Dễ c/m:  \(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)

\(\Rightarrow3^2\ge3\left(ab+bc+ca\right)\)

\(\Rightarrow ab+bc+ca\le3\)

\(BĐT\ge3-\frac{3}{2}=\frac{3}{2}\)

hay \(\frac{a}{1+b^2}\)\(+\frac{b}{1+c^2}\)\(+\frac{c}{1+a^2}\)\(\ge\frac{3}{2}\)

(Dấu "="\(\Leftrightarrow a=b=1\))

18 tháng 12 2016

Ta có 

\(\left(a+\frac{1}{b}\right)^2+\frac{25}{4}+\left(b+\frac{1}{a}\right)^2+\frac{25}{4}=\left[\left(a+\frac{1}{b}\right)^2+\left(\frac{5}{2}\right)^2\right]+\left[\left(b+\frac{1}{a}\right)^2+\left(\frac{5}{2}\right)^2\right]\ge5\left(a+\frac{1}{b}\right)+5\left(b+\frac{1}{a}\right)\)

\(=5\left(a+b\right)+5\left(\frac{1}{a}+\frac{1}{b}\right)\)

 \(\ge5\left(a+b\right)+5.\frac{4}{a+b}\)

 \(=5.1+\frac{5.4}{1}=25\)

\(\Rightarrow\left(a+\frac{1}{b}\right)^2+\left(b+\frac{1}{a}\right)^2\ge\frac{25}{2}\)

  

18 tháng 12 2016

\(\left(a+\frac{1}{a}\right)^2+\left(b+\frac{1}{b}\right)^2\ge\frac{25}{2}\) ms đúng

29 tháng 4 2020

1, Vì m > 2

\(\Rightarrow\) m - 2 > 2 - 2

\(\Rightarrow\) m(m - 2) > m(2 - 2)

\(\Rightarrow\) m2 - 2m > 0

a < 0; b < 0; a > b

\(\Rightarrow\) \(\frac{1}{a}< \frac{1}{b}\) (Vì mẫu a > b nên phân số \(\frac{1}{a}< \frac{1}{b}\))

Bạn ơi, đề cho a > b thì làm sao chứng minh được a \(\ge\) b hả bạn

Chúc bn học tốt!!

29 tháng 11 2016

\(\frac{a^3}{b+c}+\frac{b^3}{a+c}+\frac{c^3}{a+b}=\frac{a^4}{ab+ac}+\frac{b^4}{ba+bc}+\frac{c^4}{ca+cb}\)

\(\ge\frac{\left(a^2+b^2+c^2\right)^2}{2\left(ab+bc+ca\right)}\ge\frac{\left(a^2+b^2+c^2\right)^2}{2\left(a^2+b^2+c^2\right)}=\frac{1}{2}\)