So sánh
a. 3√5 và 2√10
b. 2√5 và √21
c. √7 + √15 và 7
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a) \(\dfrac{-5}{6}\ne\dfrac{10}{-14}\left(\dfrac{10}{-14}=-\dfrac{5}{7}\right).\)
b) \(\dfrac{-15}{-60}\ne\dfrac{-3}{12}\left(\dfrac{-15}{-60}=\dfrac{1}{4}\right).\)
Bài 2:
a) \(\dfrac{20}{-140}=-\dfrac{1}{7}.\)
b) \(\dfrac{4.18}{9.12}=\dfrac{72}{108}=\dfrac{2}{3}.\)
c) \(\dfrac{17.25-17.3}{2.\left(-15\right)}=\dfrac{17.\left(25-3\right)}{-30}=-\dfrac{17.22}{30}=\dfrac{374}{30}=\dfrac{187}{15}.\)
Bài 3:
a) \(\dfrac{-3}{5}< \dfrac{4}{-7}.\)
b) \(\dfrac{-4}{21}>\dfrac{-7}{35}.\)
c) \(\dfrac{-7}{24}>\dfrac{-2}{3}.\)
d) \(\dfrac{-52}{167}< \dfrac{-3}{-4}.\)
a)
\(\dfrac{48}{92}=\dfrac{48:4}{92:4}=\dfrac{12}{23}\)
\(\dfrac{36}{69}=\dfrac{36:3}{69:3}=\dfrac{12}{23}\)
Ta có:
Mẫu số chung 2 phân số: 23
Vì \(12=12\) nên \(\dfrac{12}{23}=\dfrac{12}{23}\)
Vậy \(\dfrac{48}{92}=\dfrac{36}{69}\)
b)
\(\dfrac{3}{5}+\dfrac{4}{7}+\dfrac{7}{8}=\dfrac{573}{280}\)
Ta có:
Mẫu số chung 2 phân số: 280
\(\dfrac{3}{1}=\dfrac{3*280}{1*280}=\dfrac{840}{280}\)
Vì \(573< 840\) nên \(\dfrac{573}{280}< \dfrac{840}{280}\)
Vậy \(\dfrac{573}{280}< \dfrac{3}{1}\)
c)
Ta có:
Mẫu số chung 2 phân số: 10
\(\dfrac{2}{5}=\dfrac{2*2}{5*2}=\dfrac{4}{10}\)
Vì \(1< 4\) nên\(\dfrac{1}{10}< \dfrac{4}{10}\)
Vậy \(\dfrac{1}{10}< \dfrac{2}{5}\)
d)
\(\dfrac{4}{10}=\dfrac{4:2}{10:2}=\dfrac{2}{5}\)
Ta có:
Mẫu số chung 2 phân số: 5
Vì \(2=2\) nên \(\dfrac{2}{5}=\dfrac{2}{5}\)
Vậy \(\dfrac{4}{10}=\dfrac{2}{5}\)
1.a) 3/4 > 5/10
b) 35/25 > 16/14
2.a) 7/5 > 5/7
b) 14/16 < 24/21
HT nha
( bạn t.i.c.k cho mik nha, mik cảm ơn )
a) Đặt \(A=\frac{7^{15}}{1+7+7^2+...+7^{14}}\)
Đặt \(B=1+7+7^2+...+7^{14}\)
\(\Rightarrow7B=7+7^2+...+7^{15}\)
\(\Rightarrow7B-B=6B=7^{15}-1\)
\(\Rightarrow B=\frac{7^{15}-1}{6}\)
\(\Rightarrow A=\frac{7^{15}-1+1}{\frac{7^{15}-1}{6}}=\left(7^{15}-1\right).\frac{6}{7^{15}-1}+\frac{6}{7^{15}-1}=6+\frac{6}{7^{15}-1}\)
Tự làm tiếp nha
a, Ta có: \(\frac{a}{3}=\frac{b}{2};\frac{b}{7}=\frac{c}{5}\Rightarrow\frac{a}{21}=\frac{b}{14}=\frac{c}{10}\)
Áp dụng tính chất dãy tỉ số bằng nhau
\(\frac{a}{21}=\frac{b}{14}=\frac{c}{15}=\frac{3a-7b+5c}{63-98+75}=\frac{30}{40}=\frac{3}{4}\)
\(a=\frac{63}{4};b=\frac{42}{4};c=\frac{45}{4}\)
b, Ta có : \(7a=9b=21c\Rightarrow\frac{7a}{63}=\frac{9b}{63}=\frac{21c}{63}\Rightarrow\frac{a}{9}=\frac{b}{7}=\frac{c}{3}\)
Áp dụng tính chất dãy tỉ số bằng nhau
\(\frac{a}{9}=\frac{b}{7}=\frac{c}{3}=\frac{a-b+c}{9-7+3}=-\frac{15}{5}=-3\Rightarrow a=-27;b=-21;c=-9\)
\(a,MSC:4\\ \dfrac{1}{2}=\dfrac{1\times2}{2\times2}=\dfrac{2}{4}\)
\(\dfrac{3}{4}\) giữ nguyên
\(2< 3\\ =>\dfrac{1}{2}< \dfrac{3}{4}\)
\(b,MSC:20\\ \dfrac{5}{4}=\dfrac{5\times5}{4\times5}=\dfrac{25}{20}\)
\(\dfrac{15}{20}\) giữ nguyên
\(25>15\\ \Rightarrow\dfrac{5}{4}>\dfrac{15}{20}\)
\(c,MSC:35\\ \dfrac{5}{7}=\dfrac{5\times5}{7\times5}=\dfrac{25}{35}\\ \dfrac{7}{5}=\dfrac{7\times7}{5\times7}=\dfrac{49}{35}\\ 25< 49\\ \Rightarrow\dfrac{5}{7}< \dfrac{7}{5}\)
\(a.\)Ta có: \(3\sqrt{5}=\sqrt{9}\cdot\sqrt{5}=\sqrt{45} \)
\(2\sqrt{10}=\sqrt{4}\cdot\sqrt{10}=\sqrt{40}\)
Mà \(45>40\Leftrightarrow\sqrt{45}>\sqrt{40}\)
Vậy \(3\sqrt{5}>2\sqrt{10}\)
\(b.\)Ta có:\(2\sqrt{5}=\sqrt{4}\cdot\sqrt{5}=\sqrt{20}\)
Mà \(20 < 21 \Leftrightarrow \sqrt{20} < \sqrt{21}\)
Vậy \(2\sqrt{5} < \sqrt{21}\)
\(c.\)Ta có: \(\left(\sqrt{7}+\sqrt{15}\right)^2=7+2\cdot\sqrt{7}\cdot\sqrt{15}+15=22+2\sqrt{105}=22+\sqrt{420}\)
\(7^2=49=22+\sqrt{27^2}=22+\sqrt{729}\)
Lại có:\(420< 729\Rightarrow\sqrt{420}< \sqrt{729}\)
\(\Rightarrow22+\sqrt{420}< 22+\sqrt{729}\)
\(\Rightarrow\left(\sqrt{7}+\sqrt{15}\right)^2< 7^2\)
Vậy \(\sqrt{7}+\sqrt{15}< 7\)