K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: ΔABC vuông tại A có AH là đường cao

nên AB^2=BH*BC; AC^2=CH*CB

=>AB^2/AC^2=BH/CH

b:

góc B=90-60=30 độ

góc HAB=90-30=60 độ

BC=căn 8^2+12^2=4*căn 13(cm)

HB=AB^2/BC=36/căn 13(cm)

AH=8*12/4*căn 13=24/căn 13(cm)

 

góc B=90-60=30 độ

góc HAB=90-30=60 độ

BC=căn 8^2+12^2=4*căn 13(cm)

HB=AB^2/BC=36/căn 13(cm)

AH=8*12/4*căn 13=24/căn 13(cm)

 

20 tháng 9 2021

GIÚP mình thật đầy đủ nhất

Bài 2: 

Ta có: \(\dfrac{AB}{AC}=\dfrac{5}{6}\)

\(\Leftrightarrow\dfrac{HB}{HC}=\dfrac{25}{36}\)

\(\Leftrightarrow HB=\dfrac{25}{36}HC\)

Ta có: HB+HC=BC

\(\Leftrightarrow HC\cdot\dfrac{61}{36}=122\)

\(\Leftrightarrow HC=72\left(cm\right)\)

hay HB=50(cm)

a: Sửa đề: ΔABH đồng dạng với ΔCBA

Xét ΔABH vuông tại H và ΔCBA vuông tại A có

góc B chung

=>ΔABH đồng dạng với ΔCBA

b: Xét ΔAHB vuông tại H và ΔCHA vuông tại H có

góc HAB=góc HCA

=>ΔAHB đồng dạng với ΔCHA

=>HA/HC=HB/HA

=>HA^2=HB*HC

c: Xét tứ giác ABCD có

AB//CD

AB=CD

=>ABCD là hbh

=>AD//BC

=>AD vuông góc AH

ΔADH vuông tại A có AF là đường cao

nên HF*HD=HA^2=HB*HC

 

a: Xét ΔABC vuông tại A có AH là đường cao

nên AB^2=BH*BC và AC^2=CH*BC

=>AB^2/AC^2=BH/CH

b: S AHC=8,64

=>1/2*AH*HC=8,64

=>AH*HC=17,28

S AHB=15,36

=>1/2*AH*HB=15,36

=>AH*HB=30,72

mà AH*HC=17,28

nên AH*AH*HB*HC=30,72*17,28

=>AH^2*AH^2=30,72*17,28

=>AH^4=530,8416

=>\(AH=\sqrt[4]{530.8416}=4.8\left(cm\right)\)

 

4 tháng 8 2023

Bạn làm câu c) giúp mình được không

TL
24 tháng 6 2021

a, Ta có : \(\dfrac{AB}{AC}=\dfrac{3}{4}=>\dfrac{3}{4}AC=AB\)

AB + AC = 21

3/4 AC + AC = 21

7/4 AC = 21

AC = 12 ( cm )

AB = 21 - 12 = 9 ( cm )

Áp dụng định lí Pytago vào tam giác , ta có :

BC ^ 2  = AB ^ 2 + AC ^ 2 = 12^2 + 9^2 = 225

-> BC = 15 ( cm )

TL
24 tháng 6 2021

b, Áp dụng hệ thức lượng :

AH . BC = AB . AC 

-> AH = AB.AC / BC = \(\dfrac{9.12}{15}=7,2\left(cm\right)\)

AB^2 = BH . BC

-> BH = AB^2 / BC = \(\dfrac{81}{15}=5,4\left(cm\right)\)

AC^2 = HC . BC

-> HC = AC^2 / BC = \(\dfrac{144}{15}=9,6\left(cm\right)\)

14 tháng 12 2021

Áp dụng HTL: \(AB^2=BH.BC;AC^2=CH.BC\)

\(\Leftrightarrow\dfrac{AB^2}{AC^2}=\dfrac{BH.BC}{CH.BC}=\dfrac{BH}{CH}\)

7 tháng 6 2021

a) \(1+tan^2B=1+\dfrac{AC^2}{AB^2}=\dfrac{AB^2+AC^2}{AB^2}=\dfrac{BC^2}{AB^2}=\dfrac{1}{\left(\dfrac{AB}{BC}\right)^2}=\dfrac{1}{cos^2B}\)

b) Ta có: \(a.sinB.cosB=BC.\dfrac{AC}{BC}.\dfrac{AB}{BC}=\dfrac{AC.AB}{BC}=\dfrac{AH.BC}{BC}=AH\)

\(AB^2=BH.BC\Rightarrow BH=\dfrac{AB^2}{BC}=BC.\left(\dfrac{AB}{BC}\right)^2=BC.cos^2B\)

Tương tự \(\Rightarrow CH=BC.sin^2B\)

17 tháng 9 2021

\(a,\) Áp dụng HTL tam giác

\(\left\{{}\begin{matrix}AH^2=BH\cdot HC\\AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}CH=\dfrac{AH^2}{BH}=\dfrac{36}{4,5}=8\left(cm\right)\\AB=\sqrt{4,5\left(4,5+8\right)}=\sqrt{4,5\cdot12,5}=7,5\left(cm\right)\\AC=\sqrt{8\cdot12,5}=10\left(cm\right)\end{matrix}\right.\)

và \(BC=12,5\left(cm\right)\)

\(b,\) Áp dụng HTL tam giác

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\\AH^2=CH\cdot BH\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}BC=\dfrac{AB^2}{BH}=\dfrac{36}{3}=12\left(cm\right)\\CH=\dfrac{AC^2}{BC}=\dfrac{BC^2-AB^2}{12}=\dfrac{6\sqrt{3}}{12}=\dfrac{\sqrt{3}}{2}\left(cm\right)\\AH=3\cdot\dfrac{\sqrt{3}}{2}=\dfrac{3\sqrt{3}}{2}\left(cm\right)\end{matrix}\right.\)