tìm số nguyên dương x biết : 1+ 1/1+2 +1/1+2+3 +...+1/1+2+3+...+x =2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
\(1+\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+3+...+x}=1+\frac{1}{\frac{2.3}{2}}+\frac{1}{\frac{3.4}{2}}+....+\frac{1}{\frac{x(x+1)}{2}}\)
\(=1+2\left(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x(x+1)}\right)\)
\(=1+2\left(\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{(x+1)-x}{x(x+1)}\right)\)
\(=1+2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}\right)\)
\(=1+2(\frac{1}{2}-\frac{1}{x+1})=2-\frac{2}{x+1}\)
Ta có: $2-\frac{2}{x+1}=2$
$\Leftrightarrow \frac{2}{x+1}=0$ (vô lý)
Vậy không tồn tại $x$ nguyên dương thỏa mãn.
\(1+\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+3+...+x}=2\)
=> \(1+\frac{1}{\frac{2\left(1+2\right)}{2}}+\frac{1}{\frac{3\left(1+3\right)}{2}}+....+\frac{1}{\frac{x\left(x+1\right)}{2}}=2\)
=> \(1+\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{x\left(x+1\right)}=2\)
=> \(2\left(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x\left(x+1\right)}\right)=1\)
=> \(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{1}{2}\)
=> \(\frac{1}{2}-\frac{1}{x+1}=\frac{1}{2}\)
=> \(\frac{1}{x+1}=0\Rightarrow x\in\varnothing\)
Bài làm :
Ta có :
\(1+\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+3+...+x}=2\)
\(\Leftrightarrow1+\frac{1}{\frac{2\left(1+2\right)}{2}}+\frac{1}{\frac{3\left(1+3\right)}{2}}+....+\frac{1}{\frac{x\left(x+1\right)}{2}}=2\)
\(\Leftrightarrow1+\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{x\left(x+1\right)}=2\)
\(\Leftrightarrow2\left(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x\left(x+1\right)}\right)=1\)
\(\Leftrightarrow\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{1}{2}\)
\(\Leftrightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{1}{2}\)
\(\Leftrightarrow\frac{1}{x+1}=0\)
=> Không tồn tại x