a)(2x-3)4=54
b)(2x-3)=-64
tìm x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b)4x^2y^2-(x^2+y^2)^2
=(2xy)2-(x2+y2)2
=[2xy-(x2+y2)][2xy+(x2+y2)]
=(2xy-x2-y2)(2xy+x2+y2)
=-(-2xy+x2+y2)(x+y)2
=-(x-y)2(x+y)2
c) x^2+2x-3
=x2-x+3x-3
=x(x-1)+3(x-1)
=(x-1)(x+3)
d) 2a^3-54b^3
=2(a3-27b3)
=2[a3-(3b)3]
=2(a-3b)(a2+3ab+9b2)
\(a,\Rightarrow x^3+9x^2+27x+27-9x^3-6x^2-x+8x^3+1-3x^2=54\\ \Rightarrow26x=26\Rightarrow x=1\\ b,\Rightarrow x^3-9x^2+27x-27-x^3+27+6x^2+12x+6+3x^2=-33\\ \Rightarrow39x=-39\Rightarrow x=-1\)
a) \(\left(2x+3\right)\left(y-1\right)=54\)
\(\Rightarrow2x+3,y-1\inƯ\left(54\right)\)
Ta có bảng sau:
2x + 3 | 54 | 1 | -1 | -54 | 2 | -2 | 27 | -27 | -9 | 9 | 6 | -6 | 18 | -18 | -3 | 3 |
y - 1 | 1 | 54 | -54 | -1 | 27 | -27 | 2 | -2 | -6 | 6 | 9 | -9 | 3 | -3 | -18 | 18 |
x | 51/2 | -1 | -2 | -57/2 | -1/2 | -5/2 | 12 | -15 | -6 | 3 | 3/2 | -9/2 | 15/2 | -21/2 | -3 | 0 |
y | 2 | 55 | -53 | 0 | 28 | -26 | 3 | -1 | -5 | 7 | 10 | -8 | 4 | -2 | -17 | 19 |
Vậy: ...
câu 1:
a,x2+2x-4z2+1
=x2+2x.1+12-(2z)2
=(x+1)2-(2z)2
=(x+1-2z)(x+1+2z)
a) \(\dfrac{x}{2}=\dfrac{y}{3}\Rightarrow\left(\dfrac{x}{2}\right)^2=\left(\dfrac{y}{3}\right)^2=\dfrac{x.y}{2.3}=\dfrac{54}{6}=9\)
\(\Rightarrow\left\{{}\begin{matrix}x^2=36\\y^2=81\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=\pm6\\y=\pm9\end{matrix}\right.\)
b) \(\dfrac{x}{5}=\dfrac{y}{3}\Rightarrow\left(\dfrac{x}{5}\right)^2=\left(\dfrac{y}{3}\right)^2=\dfrac{x^2-y^2}{5^2-3^2}=\dfrac{4}{16}=\dfrac{1}{4}\)
\(\Rightarrow\left\{{}\begin{matrix}x^2=\dfrac{25}{4}\\y^2=\dfrac{9}{4}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\pm\dfrac{5}{2}\\y=\pm\dfrac{3}{2}\end{matrix}\right.\)
c: Ta có: \(\dfrac{x}{2}=\dfrac{y}{3}\)
nên \(\dfrac{x}{10}=\dfrac{y}{15}\)
Ta có: \(\dfrac{y}{5}=\dfrac{z}{7}\)
nên \(\dfrac{y}{15}=\dfrac{z}{21}\)
mà \(\dfrac{x}{10}=\dfrac{y}{15}\)
nên \(\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{21}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{21}=\dfrac{92}{46}=2\)
Do đó: x=20; y=30; z=42
a) a2−b2−4a+4
=(a2-4a+4)-b2
=(a-2)2-b2
=(a-2-b)(a-2+b)a2−b2−4a+4
b) x2+2x−3
=x2-x+3x-3
=x(x-1)+3(x-1)
=(x+3)(x-1)x2+2x−3
c) 4x2y2−(x2+y2)2
=(2xy-x2-y2)(2xy+x2+y2)
=-(x-y)2(x+y)2
d) 2a3−54b3
=2(a3-27b3)
=2(a-3b)(a2+3ab+9b2)
Phân tích đa thức thành nhân tử
a, a2-b2 -4a+4
\(=\left(a-2\right)^2-b^2\)
\(=\left(a-b-2\right)\left(a-b+2\right)\)
b, x2+2x-3
\(=x^2+3x-x-3\)
\(=x\left(x+3\right)-\left(x+3\right)\)
\(=\left(x+3\right)\left(x-1\right)\)
c,4x2y2 - (x2+y2)2
\(=\left(2xy-x^2-y^2\right)\left(2xy+x^2+y^2\right)\)
\(=-\left(x+y\right)^2\left(x-y\right)^2\)
d,2a3-54b3
\(=2\left(a^3-27b^3\right)=2\left(a-3b\right)\left(a^2+3ab+9b^2\right)\)
a) \(\left(2x-3\right)^4=5^4\)
\(\Rightarrow\left[{}\begin{matrix}2x-3=5\\2x-3=-5\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x=8\\2x=-2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{8}{2}=4\\x=-\dfrac{2}{2}=-1\end{matrix}\right.\)
b) \(\left(2x-3\right)^3=-64\)
\(\Rightarrow\left(2x-3\right)^3=\left(-4\right)^3\)
\(\Rightarrow2x-3=-4\)
\(\Rightarrow2x=-1\)
\(\Rightarrow x=-\dfrac{1}{2}\)
a/
\(\left(2x-3\right)^4=5^4\\ \Leftrightarrow\left|2x-3\right|=5\\ \Leftrightarrow\left[{}\begin{matrix}2x-3=5\\2x-3=-5\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}2x=8\\2x=-2\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=4\\x=-1\end{matrix}\right.\)
Vậy...
b/ 2x-3=-64
<=>2x = -61
<=> x = -61/2