cho a,b thuộc N* (a và b >2). Chứng minh a+b<a.b
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) a(a+1)(a+2)
+) Giả sử a là số lẻ
=> a+1 là số chẵn và chia hết cho 2 => a(a+1)(a+2) chia hết cho 2
+) Giả sử a là số chẵn
=> a chia hết cho 2 => a(a+1)(a+2) chia hết cho 2
Vậy a(a+1)(a+2) chia hết cho 2 với mọi a thuộc N (1)
+) Giả sử a không chia hết cho 3 nên a chia 3 dư 1 hoặc dư 2
Nếu a chia 3 dư 1 thì a+2 chia hết cho 3 => a(a+1)(a+2) chia hết cho 3
Nếu a chia 3 dư 2 thì a+1 chia hết cho 3 => a(a+1)(a+2) chia hết cho 3
Vậy a(a+1)(a+2) chia hết cho 3 với mọi a thuộc N (2)
Từ (1) và (2) => a(a+1)(a+2) chia hết cho 2 và 3 với mọi a thuộc N
_HT_
a) 1980a - 1995b
Ta có: 1980a luôn có chữ số tận cùng là 0 vì 0 nhân với số nào cũng đều có chữ số tận cùng là 0
1995b sẽ có chữ số tận cùng là 0 nếu b là số chẵn và ngược lại, 1995b sẽ có chữ số tận cùng là 5 nếu b là số lẻ
Từ đó => 1980a-1995b có tận cùng là : 0-5 = 5 hoặc 0-0= 0
Mà số có chữ số tận cùng là 0 hoặc 5 thì đều chia hết cho 5
Vậy 1980a-1995b chia hết cho 5 với mọi a,b thuộc N (1)
Ta có: 1980 chia hết cho 3 => 1980a cũng chia hết cho 3 với mọi a
1995 chia hết cho 3 => 1995b cũng chia hết cho 3 với mọi b
Vậy 1980a-1995b chia hết cho 3 với mọi a,b thuộc N (2)
Từ (1) và (2) => 1980a-1995b chia hết cho 3 và 5 với mọi a,b thuộc N
=> ĐPCM
_HT_
a) (ab)n = ab.ab.ab.....ab (n thừa số ab) = (a.a.a.....a).(b.b.b....b) (n thừa số a ; n thừa số b) = an.bn
Câu b bạn chứng minh tương tự.
Vì số chính phương chia 3 dư 1 hoặc 0 (tự c/m)
Do đó các cặp số dư khi chia lần lượt a2 và b2 cho 3 là
(0;0); (0;1); (1;0) hoặc (1;1)
Vì a2 + b2 chia hết 3 nên ta nhận cặp (0;0)
=> a,b đều chia hết 3 (đpcm)
\(a,\dfrac{a}{b}>1\Leftrightarrow a>1\cdot b=b\\ \dfrac{a}{b}< 1\Leftrightarrow a< 1\cdot b=b\\ b,\dfrac{a}{b}=\dfrac{a\left(b+1\right)}{b\left(b+1\right)}=\dfrac{ab+a}{b^2+b}\\ \dfrac{a+1}{b+1}=\dfrac{b\left(a+1\right)}{b\left(b+1\right)}=\dfrac{ab+b}{b^2+b}\\ \forall a=b\Leftrightarrow\dfrac{a}{b}=\dfrac{a+1}{b+1}\\ \forall a>b\Leftrightarrow\dfrac{a}{b}>\dfrac{a+1}{b+1}\\ \forall a< b\Leftrightarrow\dfrac{a}{b}< \dfrac{a+1}{b+1}\)
\(c,\forall a>b\Leftrightarrow\dfrac{a}{b}-1=\dfrac{a-b}{b}>\dfrac{a-b}{b+n}\left(b< b+n;a-b>0\right)=\dfrac{a+n}{b+n}-1\\ \Leftrightarrow\dfrac{a}{b}>\dfrac{a+n}{b+n}\\ \forall a< b\Leftrightarrow1-\dfrac{a}{b}=\dfrac{b-a}{b}>\dfrac{b-a}{b+n}\left(b< b+n;b-a>0\right)=1-\dfrac{a+n}{b+n}\\ \Leftrightarrow1-\dfrac{a}{b}>1-\dfrac{a+n}{b+n}\Leftrightarrow\dfrac{a}{b}>\dfrac{a+n}{b+n}\\ \forall a=b\Leftrightarrow\dfrac{a+n}{b+n}=\dfrac{a}{b}\left(=1\right)\)
Bài 1:
Xét hiệu: 6(x+7y) - 6x+11y = 6x+42y-6x+11y = 31y
Vì 6x+11y chia hết cho 31, 31y chia hết cho 31
=> 6(x+7y) chia hết cho 31
Mà (6;31)=1 => x+7y chia hết cho 31
Bài 3:
a,n2+3n-13 chia hết cho n+3
=>n(n+3)-13 chia hết cho n+3
=>13 chia hết cho n+3
=>n+3 E Ư(13)={1;-1;13;-13}
=>n E {-2;-4;10;-16}
d,n2+3 chia hết cho n-1
=>n2-n+n-1+4 chia hết cho n-1
=>n(n-1)+(n-1)+4 chia hết cho n-1
=>4 chia hết cho n-1
=>n-1 E Ư(4)={1;-1;2;-2;4;-4}
=>n E {2;0;3;-1;5;-3}
1 tổng luôn luôn bé hơn 1 tích nếu b lớn hơn 2 thì chỉ có 1 số trường hợp đặc biệt như 1 và 3 (1+3 > 1.3)