K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 4 2023

program Tong_Phan_So;

var

     tu_so1, mau_so1, tu_so2, mau_so2, tu_so_tong, mau_so_tong, ucln: integer;

begin

     write('Nhap tu so phan so 1: ');

     readln(tu_so1);

     write('Nhap mau so phan so 1: ');

     readln(mau_so1);

     write('Nhap tu so phan so 2: ');

     readln(tu_so2);

     write('Nhap mau so phan so 2: ');

     readln(mau_so2);

     tu_so_tong := tu_so1 * mau_so2 + tu_so2 * mau_so1;

     mau_so_tong := mau_so1 * mau_so2;

     ucln := gcd(tu_so_tong, mau_so_tong);

     tu_so_tong := tu_so_tong div ucln;

     mau_so_tong := mau_so_tong div ucln;

     writeln('Tong hai phan so la: ', tu_so_tong, '/', mau_so_tong);

end.

19 tháng 3 2018

Vì mỗi số hữu tỷ được viết dưới dạng phân số tối giản nên tử số và mẫu số không có ước nguyên tố chung nào.

Có 8 ước nguyên tố của 20! Là 2;3;5;7;11;13;17;19.

Mỗi một số nguyên tố này chỉ được chọn hoặc thuộc tử số hoặc mẫu số. Có tất cả 28 = 256 cách như vậy.

Tuy nhiên không phải tất cả 256 phân số này đều nhỏ hơn 1. Thật vậy; với mỗi phân số ta ghép cặp với phân số nghịch đảo của nó; có 128 cặp như thế; mà chỉ có 1 trong hai phân số đó nhỏ hơn 1.

Như vậy có tất cả 128 phân số thỏa mãn đầu bài.

Chọn B.

29 tháng 10 2017

Đáp án C

15 tháng 2 2018

Đáp án là C

24 tháng 12 2017

Bài 1: Cho dãy số (un) được xác định như sau: Un = n2 + (n+1)2  + (n+2)2 + (n + 3)2Với n =1,2 3,… Tìm tất cả các số hạng của dãy số chia hết cho 10.Bài 2: Cho dãy số được xác định bởi:  \(\hept{\begin{cases}A_0=0\\a_{n+1}=\frac{n\left(n+1\right)}{\left(n+2\right)\left(n+3\right)}\end{cases}.\left(a_n+1\right)}\) với n là số tự nhiên khác 0.a)     Tính an với n =1,2,3,4,5,6. (kết quả viết dưới dạng phân số)b)    Tính...
Đọc tiếp

Bài 1: Cho dãy số (un) được xác định như sau: Un = n2 + (n+1)+ (n+2)2 + (n + 3)2

Với n =1,2 3,… Tìm tất cả các số hạng của dãy số chia hết cho 10.

Bài 2: Cho dãy số được xác định bởi:  \(\hept{\begin{cases}A_0=0\\a_{n+1}=\frac{n\left(n+1\right)}{\left(n+2\right)\left(n+3\right)}\end{cases}.\left(a_n+1\right)}\)

 với n là số tự nhiên khác 0.

a)     Tính an với n =1,2,3,4,5,6. (kết quả viết dưới dạng phân số)

b)    Tính a2012 (Lấy kết quả đúng)

( Gợi ý: - Nhân cả tử và mẫu của a2 với cùng 1 số rồi tách tử và mẫu thành tích, tương tự với a3. Từ đó tìm CTTQ của an)

Bài 3:

Cho dãy số xác định bởi: \(\hept{\begin{cases}U_1=\sqrt{2}\\U_{n+1}=\sqrt{2^{U_n}}\end{cases}}\)  Với n là số tự nhiên khác 0. Tính U2003.

Bài 4: Tính giá trị biểu thức A biết: \(A=\sqrt{2007+\sqrt{2007+...+\sqrt{2007}}}\)  (n dấu căn)

0