Tìm x thuộc N
a) 2x = 4 nhân 128
b) 2x nhân 3x =4 nhân 9
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 1 tính giá trị biểu thức
( - 25 ) nhân ( -3 ) nhân x với x = 4
\(\left(-25\right).\left(-3\right).4\)
\(=\left(-25\right).4.\left(-3\right)\)
\(=-100.\left(-3\right)=300\)
( -1 ) nhân ( -4 ) nhân 5 nhân 8 nhân y với y =25
\(\left(-1\right).\left(-4\right).5.8.25\)
\(=4.5.8.25=4.25.5.8\)
\(=100.40=40000\)
( 2ab mũ 2 ) : c với a =4 ; b= -6 ; c =12
\(\left(2.4.\left(-6\right)\right)^2:12\)
\(=\left(-48\right)^2:12\)
\(=2304:12=192\)
[ ( -25 ) nhân ( - 27 ) nhân ( -x ) ] : y với x = 4 ; y = -9
\(\left[\left(-25\right).\left(-27\right).\left(-4\right)\right]:-9\)
\(=-2700:\left(-9\right)\)
\(=300\)
(a mũ 2 _ b mũ 2) : ( a + b ) nhân ( a _ b ) với a + 5 , b = -3
\(\left(5^2-\left(-3\right)^2\right):\left(5-3\right).\left(5+3\right)\)
\(=16:2.8\)
\(=8.8=64\)
Bài 2:
a: \(3x^2-3xy=3x\left(x-y\right)\)
b: \(x^2-4y^2=\left(x-2y\right)\left(x+2y\right)\)
c: \(3x-3y+xy-y^2=\left(x-y\right)\left(3+y\right)\)
d: \(x^2-y^2+2y-1=\left(x-y+1\right)\left(x+y-1\right)\)
\(\dfrac{3-3x}{x^2-9}\cdot\dfrac{x-3}{x-1}\\ =\dfrac{3\left(1-x\right)\left(x-3\right)}{\left(x-3\right)\left(x+3\right)\left(x-1\right)}\\ =\dfrac{-3\left(x-1\right)\left(x-3\right)}{\left(x-3\right)\left(x+3\right)\left(x-1\right)}\\ =-\dfrac{3}{x+3}\\ \dfrac{6x+4}{x^2-4}\cdot\dfrac{x^2-2x}{3x+2}\\ =\dfrac{2\left(3x+2\right)x\left(x-2\right)}{\left(x-2\right)\left(x+2\right)\left(3x+2\right)}\\ =\dfrac{2x}{x+2}\)
a) \(\Rightarrow2^x=32\Rightarrow2^x=2^5\Rightarrow x=5\)
b) \(\Rightarrow\left(2x+1\right)^3=5^3\)
\(\Rightarrow2x+1=5\Rightarrow x=2\)
c) \(\Rightarrow2^x=32\Rightarrow x=5\)
d) \(\Rightarrow4^3.4^x=4^5\Rightarrow4^x=4^2\Rightarrow x=2\)
e) \(\Rightarrow3^3.3^x=3^5\Rightarrow3^x=3^2\Rightarrow x=2\)
f) \(\Rightarrow7^2.7^x=7^4\Rightarrow7^x=7^2\Rightarrow x=2\)
a. 2x . 4 = 128
<=> 2x + 2 = 27
<=> x + 2 = 7
<=> x = 5
b. (2x + 1)3 = 125
<=> (2x + 1)3 - 53 = 0
<=> (2x + 1 - 5)\(\left[\left(2x+1\right)^2+\left(2x+1\right).5+25\right]=0\)
<=> (2x - 4)(4x2 + 4x + 1 + 10x + 5 + 25) = 0
<=> (2x - 4)(4x2 + 14x + 31) = 0
<=> \(\left[{}\begin{matrix}2x-4=0\\4x^2+14x+31=0\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}x=2\\VôNghiệm\end{matrix}\right.\)
c. 2x - 26 = 6
<=> 2x = 32
<=> x = 5
d. 64 . 4x = 45
<=> 43 . 4x = 45
<=> 43 + x = 45
<=> 3 + x = 5
<=> x = 2
e. 27 . 3x = 243
<=> 33 . 3x = 35
<=> 33 + x = 35
<=> 3 + x = 5
<=> x = 2
g. 49 . 7x = 2401 (Bn xem lại đề câu này)
<=> 72 . 7x = 74
<=> 72 + x = 74
<=> 2 + x = 4
<=> x = 2
a) \(2^x\cdot4=128\)
\(\Rightarrow2^x\cdot2^2=2^7\)
\(\Rightarrow2^{x+2}=2^7\)
\(\Rightarrow x+2=7\)
\(\Rightarrow x=5\)
b) \(\left(2x+1\right)^3=125\)
\(\Rightarrow\left(2x+1\right)^3=5^3\)
\(\Rightarrow2x+1=5\)
\(\Rightarrow2x=4\)
\(\Rightarrow x=4:2\)
\(\Rightarrow x=2\)
c) \(2x-2^6=6\)
\(\Rightarrow2x-64=6\)
\(\Rightarrow2x=70\)
\(\Rightarrow x=70:2\)
\(\Rightarrow x=35\)
d) \(64\cdot4^x=45\)
\(\Rightarrow4^3\cdot4^x=45\)
\(\Rightarrow4^{x+3}=45\)
Xem lại đề
e) \(27\cdot3^x=243\)
\(\Rightarrow3^3\cdot3^x=3^5\)
\(\Rightarrow3^{x+3}=3^5\)
\(\Rightarrow x+3=5\)
\(\Rightarrow x=2\)
g) \(49\cdot7^x=2401\)
\(\Rightarrow7^2\cdot7^x=7^4\)
\(\Rightarrow7^{x+2}=7^4\)
\(\Rightarrow x+2=4\)
\(\Rightarrow x=2\)
h) \(3^x=81\)
\(\Rightarrow3^x=3^4\)
\(\Rightarrow x=4\)
k) \(3^4\cdot3^x=3^7\)
\(\Rightarrow3^{x+4}=3^7\)
\(\Rightarrow x+4=7\)
\(\Rightarrow x=3\)
n) \(3^x+25=26\cdot2^2+2\cdot3^0\)
\(\Rightarrow3^x+25=104+2\)
\(\Rightarrow3^x+25=106\)
\(\Rightarrow3^x=81\)
\(\Rightarrow3^x=3^4\)
\(x=4\)
`@` `\text {Ans}`
`\downarrow`
`a)`
`2^x*4 = 128`
`=> 2^x = 128 \div 4`
`=> 2^x = 2^7 \div 2^2`
`=> 2^x = 2^5`
`=> x = 5`
Vậy, `x = 5.`
`b)`
\(\left(2x+1\right)^3=125\)
`=> (2x + 1)^3 = 5^3`
`=> 2x + 1 = 5`
`=> 2x = 5-1`
`=> 2x = 4`
`=> x = 4 \div 2`
`=> x = 2`
Vậy, `x = 2`
`c)`
\(2x-2^6=6\)
`=> 2x = 6+2^6`
`=> 2x = 70`
`=> x = 70 \div 2`
`=> x = 35`
Vậy, `x = 35`
`d)`
\(64\cdot4^x=45\) Bạn xem lại đề
`e)`
`27*3^x = 243`
`=> 3^3 * 3^x = 3^5`
`=> 3^(3 + x) = 3^5`
`=> 3 + x = 5`
`=> x = 5 - 3`
`=> x = 2`
Vậy, `x = 2`
`g)`
`49* 7^x = 2401`
`=> 7^2 * 7^x = 7^4`
`=> 7^(2 + x) = 7^4`
`=> 2 + x = 4`
`=> x = 4 - 2`
`=> x = 2`
Vậy, `x = 2`
`h)`
`3^x = 81`
`=> 3^x = 3^4`
`=> x = 4`
Vậy, `x = 4`
`k)`
`3^4 * 3^x = 3^7`
`=> 3^(4 + x) = 3^7`
`=> 4 + x = 7`
`=> x = 7 - 4`
`=> x = 3`
Vậy, `x = 3`
`n)`
`3^x + 25 = 26*2^2 + 2*3^0`
`=> 3^x + 25 = 104 + 2`
`=> 3^x + 25 = 106`
`=> 3^x = 106 - 25`
`=> 3^x = 81`
`=> 3^x = 3^4`
`=> x = 4`
Vậy, `x = 4.`
\(#48Cd\)
a,\(2x+1=0< =>2x=-1< =>x=-\frac{1}{2}\)
b,\(\left(x+1\right)\left(2x-1\right)=0< =>\orbr{\begin{cases}x+1=0\\2x-1=0\end{cases}< =>\orbr{\begin{cases}x=-1\\x=\frac{1}{2}\end{cases}}}\)
c,\(1-4x^2=0< =>\left(1-2x\right)\left(1+2x\right)=0< =>\orbr{\begin{cases}x=\frac{1}{2}\\x=-\frac{1}{2}\end{cases}}\)
d,\(2x^2-3x=0< =>x\left(2x-3\right)=0< =>\orbr{\begin{cases}x=0\\x=\frac{3}{2}\end{cases}}\)
\(2^x=4.128\Leftrightarrow2^x=512\Leftrightarrow2^x=2^9\Rightarrow x=9\)
\(2^x.3^x=4.9\Rightarrow\left(2.3\right)^x=36\Rightarrow6^x=6^2\Rightarrow x=2\)
9[3 mu x[ 243
25[ 5 mu x [ 652
9 [ 3 mu n [ 27
25 [ 5 mu h [ 3125
2mu n + 4.2 mu n =5.2 mu5
2 mu n / 4 =16
6.2 mu n + 3.2 mu n = 9.2 mũ n
3 mu n / 3 mu 2 =243