Cho tam giác ABC vuông tại A, BC=2AB. Giải tam giác ABC biết AC=4a
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi M là trung điểm của BC, ta có:
AM = MB = 1/2 BC = a (tính chất tam giác vuông)
Suy ra MA = MB = AB = a
Suy ra ∆ AMB đều ⇒ ∠ (ABC) = 60 0
Mặt khác: ∠ (ABC) + ∠ (ACB) = 90 0 (tính chất tam giác vuông)
Suy ra: ∠ (ACB) = 90 0 - ∠ (ABC) = 90 0 – 60 0 = 30 0
Trong tam giác vuông ABC, theo Pi-ta-go, ta có: B C 2 = A B 2 + A C 2
⇒ A C 2 = B C 2 - A B 2 = 4 a 2 - a 2 = 3 a 2 ⇒ AC = a 3
Vậy S A B C = 1/2 .AB.AC
= 1 2 a . a 3 = a 2 3 2 ( đ v d t )
a: Kẻ DK\(\perp\)BC
Xét ΔBAD vuông tại A và ΔBKD vuông tại K có
BD chung
\(\widehat{ABD}=\widehat{KBD}\)
Do đó: ΔBAD=ΔBKD
=>BA=BK
mà \(BA=\dfrac{1}{2}BC\)
nên \(BK=\dfrac{1}{2}CB\)
=>K là trung điểm của BC
Xét ΔDBC có
DK là đường cao
DK là đường trung tuyến
Do đó: ΔDBC cân tại D
b: ΔDBC cân tại D
=>\(\widehat{DBC}=\widehat{DCB}\)
mà \(\widehat{DBC}=\dfrac{1}{2}\cdot\widehat{ABC}\)
nên \(\widehat{ACB}=\dfrac{1}{2}\cdot\widehat{ABC}\)
ΔABC vuông tại A
=>\(\widehat{ABC}+\widehat{ACB}=90^0\)
=>\(\dfrac{1}{2}\cdot\widehat{ABC}+\widehat{ABC}=90^0\)
=>\(\dfrac{3}{2}\cdot\widehat{ABC}=90^0\)
=>\(\widehat{ABC}=90^0:\dfrac{3}{2}=90^0\cdot\dfrac{2}{3}=60^0\)
\(\widehat{ACB}=\dfrac{1}{2}\cdot\widehat{ABC}=\dfrac{1}{2}\cdot60^0=30^0\)
A B C D E
a, Xét tam giác AED và tam giác CED có :
cạnh ED chung
góc ADE = góc CDE = 90độ
AD = CD ( vì D là trung điểm cạnh AC )
Do đó : tam giác AED = tam giác CED ( c.g.c )
=> AE = CE ( cạnh tương ứng )
Vậy tam giác AEC cân tại E
b, Xét tam giác ABC có góc A = 90độ nên :
góc B + góc C = 90độ
mà góc C = góc EAC ( vì tam giác AEC cân theo câu a )
=> góc B + góc EAC = 90độ
Ta có : góc A = góc BAE + góc EAC = 90độ
=> góc B = góc BAE ( vì cùng phụ với góc EAC )
=> tam giác ABE cân tại E
=> AE = BE ( * )
mà AE = CE ( theo câu a )
=> BE = CE và điểm E nằm trên cạnh BC
=> E là trung điểm của BC
=> BE = CE = \(\frac{BC}{2}\) (1)
Theo bài cho : 2AB = BC
=> AB = \(\frac{BC}{2}\) (2)
Từ (1) và (2) suy ra : AB = BE và BE = AE ( theo ( * ) )
=> AB = BE = AE
Vậy tam giác ABE đều .
Học tốt
B A C M D E
Gọi M là trung điểm của BC
a) Xét 2 tam giác vuông : \(\Delta\)AED và \(\Delta\)CED có :
\(\hept{\begin{cases}AD=CD\left(gt\right)\\\widehat{EAD}=\widehat{EDC}\left(=90^{\text{o}}\right)\\ED\text{ chung}\end{cases}}\Rightarrow\Delta AED=\Delta CED\left(c.g.c\right)\)
=> AE = EC (cạnh tương ứng)
=> \(\Delta\)AEC cân tại E
b) Vì trong 1 tam giác vuông trung tuyến ứng với cạnh huyền bằng 1/2 cạnh huyền
=> AM = 1/2 BC
=> AM = BM
Lại có BM = AB
=> AB = AM = BM
=> TAM GIÁC ABE đều
\(BA=4\sqrt{3}\left(cm\right)\)
\(\widehat{A}=30^0\)
\(\widehat{C}=60^0\)
Bài 1:
Xét ΔABC vuông tại A có
\(AB^2+AC^2=BC^2\)
hay \(AB=\sqrt{13}\left(cm\right)\)
Xét ΔABC vuông tại A có
\(\sin\widehat{B}=\dfrac{AC}{BC}=\dfrac{6}{7}\)
nên \(\widehat{B}=59^0\)
hay \(\widehat{C}=31^0\)
a: Sửa đề: tính AB
AB=căn 5^2-3^2=4cm
b: Xét ΔABC vuông tại A và ΔABD vuông tại A có
AB chung
AC=AD
=>ΔABC=ΔABD
c: ΔABC=ΔABD
=>BC=BD
=>ΔBCD cân tại B
Ta có:
\(sinC=\dfrac{AB}{BC}=\dfrac{AB}{2AB}=\dfrac{1}{2}\)
\(\Rightarrow\widehat{C}=30^o\)
Mà: \(\widehat{C}+\widehat{B}=90^o\Rightarrow\widehat{B}=90^o-\widehat{C}=90^o-30^o=60^o\)
Xét tam giác ABC vuông tại A có:
\(sinB=\dfrac{AC}{BC}=\dfrac{4a}{BC}\)
\(\Rightarrow BC=\dfrac{4a}{sinB}=\dfrac{4a}{sin60^o}=\dfrac{4a}{\dfrac{\sqrt{3}}{2}}=\dfrac{8a}{\sqrt{3}}=\dfrac{8\sqrt{3}a}{3}\)
\(\Rightarrow AC=\dfrac{1}{2}BC=\dfrac{1}{2}\cdot\dfrac{8\sqrt{3}}{3}=\dfrac{8\sqrt{3}}{6}a=\dfrac{4\sqrt{3}}{3}a\)
Xét ΔABC vuông tại A có sin C=AB/BC=1/2
nên góc C=30 độ
=>góc B=90-30=60 độ
Xét ΔABC vuông tại A có sin B=AC/BC
=>4a/BC=sin60
=>\(BC=4a:sin60=\dfrac{8}{3}\sqrt{3}\cdot a\)
=>\(AC=\dfrac{1}{2}\cdot BC=\dfrac{4}{3}\cdot\sqrt{3}\cdot a\)