K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 7 2023

1

\(\dfrac{AB}{AC}=\dfrac{3}{4}\Rightarrow AB=\dfrac{3}{.4}AC\)

Theo pytago xét tam giác ABC vuông tại A có:

\(\sqrt{AB^2+AC^2}=BC^2\\ \Rightarrow\sqrt{\left(\dfrac{3}{4}AC\right)^2+AC^2}=10\\ \Rightarrow AC=8\\ \Rightarrow AB=\dfrac{3.8}{4}=6\)

Theo hệ thức lượng xét tam giác ABC vuông tại A, đường cao AH có:

\(AB^2=BH.BC\\ \Leftrightarrow BH=\dfrac{AH^2}{BC}=\dfrac{6^2}{10}=3,6\)

2

\(\dfrac{AB}{AC}=\dfrac{27}{4}\Rightarrow AB=\dfrac{27}{4}AC\)

\(BC=\sqrt{AB^2+AC^2}=\sqrt{\left(\dfrac{27}{4}AC\right)^2+AC^2}=\dfrac{\sqrt{745}AC}{4}\) ( Theo pytago trong tam giác ABC vuông tại A)

Theo hệ thức lượng trong tam giác ABC vuông tại A, đường cao AH có:

\(AH.BC=AB.AC\\ \Leftrightarrow33,6.\dfrac{\sqrt{745}}{4}AC=\dfrac{27}{4}AC.AC\\ \Rightarrow AC=\dfrac{56\sqrt{745}}{45}\)

\(\Rightarrow\left\{{}\begin{matrix}AB=\dfrac{27}{4}.\dfrac{56\sqrt{745}}{45}=\dfrac{42\sqrt{745}}{5}\\BC=\dfrac{\sqrt{745}}{4}.\dfrac{56\sqrt{745}}{45}=\dfrac{2086}{9}\end{matrix}\right.\)

Vậy \(\left\{{}\begin{matrix}AC\approx33,97\\AB\approx229,28\\BC\approx231,78\end{matrix}\right.\)

3

`BC=HB+HC=36+64=100`

Theo hệ thức lượng có (trong tam giác ABC vuông tại A đường cao AH):

\(AH^2=HB.HC\\ \Rightarrow AH=\sqrt{36.64}=48\)

\(AB=\sqrt{HB.BC}=\sqrt{36.100}=60\\ AC=\sqrt{HC.BC}=\sqrt{64.100}=80\)

c) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}BH\cdot BC=AB^2\\CH\cdot BC=AC^2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=\dfrac{AB^2}{BC}\\CH=\dfrac{AC^2}{BC}\end{matrix}\right.\)

\(\Leftrightarrow\dfrac{BH}{CH}=\dfrac{AB^2}{BC}\cdot\dfrac{BC}{AC^2}=\dfrac{AB^2}{AC^2}\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHB vuông tại H có HE là đường cao ứng với cạnh huyền AB, ta được:

\(BE\cdot BA=HB^2\)

\(\Leftrightarrow BF=\dfrac{HB^2}{AB}\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHC vuông tại H có HF là đường cao ứng với cạnh huyền AC, ta được:

\(CF\cdot CA=CH^2\)

hay \(CF=\dfrac{HC^2}{AC}\)

Ta có: \(\dfrac{BE}{CF}=\dfrac{HB^2}{AB}:\dfrac{HC^2}{AC}\)

\(\Leftrightarrow\dfrac{BE}{CF}=\left(\dfrac{HB}{HC}\right)^2\cdot\dfrac{AC}{AB}\)

\(\Leftrightarrow\dfrac{BE}{CF}=\dfrac{AB^4\cdot AC}{AC^4\cdot AB}=\left(\dfrac{AB}{AC}\right)^3\)

anh ơi có thể làm phần a và phần b giúp em với 

 

4 tháng 8 2016
Câu 1: Áp dụng đ/lí pytago vào tam giác ABC vuông tại A CÓ:AB^2+AB^2=BC^2 Hay: 12^2+5^2=169=BC^2 => BC=13cm ÁP dụng hệ thức ta có: +) AB^2=BH.BC Hay: BH=AB^2:BC=144:13 =144/13(cm) Ta có CH=BC-BH=13-144/13=25/13(cm)
4 tháng 8 2016

Bạn chỉ cần áp dụng hệ thức lượng là đc rồi o0o

bạn hỏi nhiều quá , các bạn nhìn vào ko biết trả lời sao đâu !!!

13 tháng 2 2016

rối mắt quá mà viết dày nên bài nọ xọ bài kia mình ko trả lời được cho dù biết rất rõ

a: Xet ΔABC vuông tại A và ΔHBA vuông tại H co

góc B chung

=>ΔABC đồng dạng với ΔHBA

=>BA/BH=BC/BA

=>BA^2=BH*BC

b: \(BC=\sqrt{3^2+4^2}=5\left(cm\right)\)

AH=3*4/5=2,4cm

16 tháng 8 2016

a/ Ta có: AB2 + AC2 = BC2 = 25

=> tam giác ABC vuông tại A

b/ \(AB.AC=AH.BC\Rightarrow AH=\frac{AB.AC}{BC}=\frac{3.4}{5}=\frac{12}{5}=2,4cm\)

\(AB^2=BH.BC\Rightarrow BH=\frac{AB^2}{BC}=\frac{3^2}{5}=\frac{9}{5}=1,8cm\)

\(BC=BH+CH\Rightarrow CH=BC-BH=5-1,8=3,2cm\)

Trong tam giác vuông AHB có: 

\(AH.HB=HD.AB\Rightarrow HD=\frac{AH.HB}{AB}=\frac{2,4.1,8}{3}=\frac{36}{25}=1,44cm\)

Trong tam giác vuông AHC có:

\(AH.HC=HE.AC\Rightarrow HE=\frac{AH.HC}{AC}=\frac{2,4.3,2}{4}=\frac{48}{25}=1,92cm\)

3:

Đặt HB=x; HC=y

Theo đề, ta có: x+y=289 và xy=120^2=14400

=>x,y là các nghiệm của phương trình:

a^2-289a+14400=0

=>a=225 hoặc a=64

=>(x,y)=(225;64) và (x,y)=(64;225)

TH1: BH=225cm; CH=64cm

=>\(AB=\sqrt{225\cdot289}=15\cdot17=255\left(cm\right)\) và \(AC=\sqrt{64\cdot289}=7\cdot17=119\left(cm\right)\)

TH2: BH=64cm; CH=225cm

=>AB=119m; AC=255cm