K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 6 2017

Võ Thiện Tuấn viết tổng quát kết quả hay phép đề bài hả bạn ?

21 tháng 6 2017

\(=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7} +....+\frac{1}{100}-\frac{1}{103}\)

\(=1-\frac{1}{103}\)

\(=\frac{102}{103}\)

24 tháng 8 2015

\(\frac{x}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+....+\frac{1}{100.103}=\frac{102}{103}\)

\(\Leftrightarrow\frac{x-1}{1.4}+\left(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{100.103}\right)=\frac{102}{103}\)

\(\Leftrightarrow\frac{3\left(x-1\right)}{1.4}+\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{100}-\frac{1}{103}\right)=\frac{306}{103}\)

\(\Leftrightarrow\frac{3\left(x-1\right)}{1.4}+\frac{102}{103}=\frac{306}{103}\)

\(\Leftrightarrow\frac{3}{4}\left(x-1\right)=\frac{204}{103}\)

\(\Leftrightarrow x-1=\frac{272}{103}\)

\(\Leftrightarrow x=\frac{375}{103}\)

24 tháng 8 2015

OLM xem đi em lm đúng ko

24 tháng 8 2015

 

=> 3x/4+3/4.7+3/7.10+...+3/100.103=306/103(nhân cả 2 vế của đt lên 2)

=>3x/4+(1/4-1/7)+(1/7-1/10)+...+(1/100-1/103)=306/103

=>3x/4+1/4-1/103+=306/103

=>3x/4+99/412=306/103

=>3x/4=306/103-99/412=1125/412

=>x=1125/412:3/4

=>x=1125/309

( nếu thấy đúng thì tick cho mk nha

22 tháng 4 2015

s=(1-1/4+1/4-1/7+1/7-1/10+...+1/100-1/103)+(1/103-1/104+1/104-1/105+1/105-1/106+1/106-1/107)

  =(1-1/103)+(1/103-1/107)

  =1           -         1/107

  =106/107

 

3 tháng 5 2019

\(B=\frac{1}{3}.\left(\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{100.103}\right)\)

\(B=\frac{1}{3}.\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{100}-\frac{1}{103}\right)\)

\(B=\frac{1}{3}.\left(1-\frac{1}{103}\right)\)

\(B=\frac{1}{3}.\frac{102}{103}\)

\(B=\frac{34}{103}\)

3 tháng 5 2019

Bài 3: đổi ra phân số rồi tính, đổi:\(1,5=\frac{15}{10};2,5=\frac{25}{10};1\frac{3}{4}=\frac{7}{12}\)(cái này ko giải dùm, đổi ra như thek rồi tính nha)

\(B=\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{100.103}\)

\(=\frac{1}{3}.\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{100.103}\right)\)

\(=\frac{1}{3}.\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{100}-\frac{1}{103}\right)\)

\(=\frac{1}{3}.\left(1-\frac{1}{103}\right)\)

\(=\frac{1}{3}.\frac{102}{103}\)

\(=\frac{1}{1}.\frac{34}{103}=\frac{34}{103}\)

6 tháng 4 2017

\(\frac{5}{1.4}+\frac{5}{4.7}+\frac{5}{7.10}+...+\frac{5}{100.103}\)

\(=\frac{5}{3}\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{100}-\frac{1}{103}\right)\)

\(=\frac{5}{3}\left(1-\frac{1}{103}\right)\)

\(=\frac{5}{3}.\frac{102}{103}=\frac{170}{103}\)

6 tháng 4 2017

\(\frac{5}{1.4}+\frac{5}{4.7}+\frac{5}{7.10}+...+\frac{5}{100.103}=\frac{5}{3}.\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{100.103}\right)=\frac{5}{3}.\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{100}-\frac{1}{103}\right)=\frac{5}{3}.\left(\frac{1}{1}-\frac{1}{103}\right)=\frac{5}{3}.\frac{102}{103}=\frac{170}{103}\)

24 tháng 3 2019

\(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+.....+\frac{1}{97.100}=\frac{1}{3}\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+....+\frac{3}{97.100}\right)=\frac{1}{3}\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-.......+\frac{1}{97}-\frac{1}{100}\right)=\frac{1}{3}\left(1-\frac{1}{100}\right)=\frac{1}{3}.\frac{99}{100}=\frac{33}{100}\)

24 tháng 3 2019

Gọi dãy phân số trên là A

A = \(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{97.100}\)

A = \(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{100}\)

A = \(1-\frac{1}{100}\)

A = \(\frac{99}{100}\)

22 tháng 7 2015

\(A=\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+\frac{1}{7\cdot9}+...+\frac{1}{99\cdot101}\)

\(A=\frac{1}{2}\cdot\left(\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+...+\frac{2}{99\cdot101}\right)\)

\(A=\frac{1}{2}\cdot\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{99}-\frac{1}{101}\right)\)

\(A=\frac{1}{2}\cdot\left(\frac{1}{3}-\frac{1}{101}\right)=\frac{1}{2}\cdot\frac{97}{303}=\frac{97}{606}\)

\(B=\frac{2}{4\cdot7}+\frac{2}{7\cdot10}+\frac{2}{10\cdot13}+...+\frac{2}{100\cdot103}\)

\(B=\frac{2}{3}\cdot\left(\frac{3}{4\cdot7}+\frac{3}{7\cdot10}+\frac{3}{10\cdot13}+...+\frac{3}{100\cdot103}\right)\)

\(B=\frac{2}{3}\cdot\left(\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+...+\frac{1}{100}-\frac{1}{103}\right)\)

\(B=\frac{2}{3}\cdot\left(\frac{1}{4}-\frac{1}{103}\right)=\frac{2}{3}\cdot\frac{99}{412}=\frac{33}{206}\)

5 tháng 7 2017

sai đề bạn ơi