K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 6 2017

Ta có : (2x + 1)2 = 25 

=> (2x + 1)2 = 5

=> 2x + 1 = 5

=> 2x = 4

=> x = 2 

a) ( 2x + 1)2 = 25 

   ( 2x + 1 )2 = 52 

  => 2x + 1 =  5

=> 2x        = 5  - 1

=> 2x        = 4

       x       = 4 : 2

      x       = 2

Vậy x = 2 

Làm tương tự như zậy! 
^^ Học tốt!      

a) Ta có: \(x^2-2x+1=25\)

\(\Leftrightarrow\left(x-1\right)^2=25\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=5\\x-1=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\x=-4\end{matrix}\right.\)

b) Ta có: \(\left(5x+1\right)^2-\left(5x-3\right)\left(5x+3\right)=30\)

\(\Leftrightarrow25x^2+10x+1-25x^2+9=30\)

\(\Leftrightarrow10x=20\)

hay x=2

c) Ta có: \(\left(x-1\right)\left(x^2+x+1\right)-x\left(x+2\right)\left(x-2\right)=5\)

\(\Leftrightarrow x^3-1-x\left(x^2-4\right)=5\)

\(\Leftrightarrow x^3-1-x^3+4x=5\)

\(\Leftrightarrow4x=6\)

hay \(x=\dfrac{3}{2}\)

d) Ta có: \(\left(x-2\right)^3-\left(x-3\right)\left(x^2+3x+9\right)+6\left(x+1\right)^2=15\)

\(\Leftrightarrow x^3-6x^2+12x-8-x^3+27+6\left(x^2+2x+1\right)=15\)

\(\Leftrightarrow-6x^2+12x+19+6x^2+12x+6=15\)

\(\Leftrightarrow24x=-10\)

hay \(x=-\dfrac{5}{12}\)

12 tháng 8 2021

a,\(< =>\left(x-1\right)^2-5^2=0< =>\left(x-1-5\right)\left(x-1+5\right)=0\)

\(< =>\left(x-6\right)\left(x+4\right)=0=>\left[{}\begin{matrix}x=6\\x=-4\end{matrix}\right.\)

b,\(< =>25x^2+10x+1-25x^2+9-30=0\)

\(< =>10x-20=0< =>10\left(x-2\right)=0< =>x=2\)

c,\(< =>x^3-1-x\left(x^2-4\right)-5=0\)

\(< =>x^3-1-x^2+4x-5=0< =>4x-6=0< =>x=\dfrac{6}{4}\)\(d,< =>\left(x-2\right)^3-x^3+3^3+6x^2+12x+6-15=0\)

\(< =>x^3-6x^2+12x-x^3+6x^2+12x+10=0\)

\(< =>24x+10=0< =>x=-\dfrac{5}{12}\)

a: Ta có: \(x^2-2x+1=25\)

\(\Leftrightarrow\left(x-4\right)\left(x-6\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=6\end{matrix}\right.\)

b: Ta có: \(\left(5x+1\right)^2-\left(5x-3\right)\left(5x+3\right)=30\)

\(\Leftrightarrow25x^2+10x+1-25x^2+9=30\)

\(\Leftrightarrow10x=20\)

hay x=2

c: Ta có: \(\left(x-1\right)\left(x^2+x+1\right)-x\left(x+2\right)\left(x-2\right)=5\)

\(\Leftrightarrow x^3-1-x\left(x^2-4\right)=5\)

\(\Leftrightarrow x^3-1-x^3+4x=5\)

\(\Leftrightarrow4x=6\)

hay \(x=\dfrac{3}{2}\)

30 tháng 10 2021

a) \(\Leftrightarrow x^2-4x-x^2+6x-9=0\\ \Leftrightarrow2x=9\\ \Leftrightarrow x=4,5\)

b) \(\Leftrightarrow x^2-3x-10=0\\ \Leftrightarrow\left(x^2+2x\right)-\left(5x+10\right)=0\\ \Leftrightarrow x\left(x+2\right)-5\left(x+2\right)=0\\ \left(x-5\right)\left(x+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=5\\x=-2\end{matrix}\right.\)

c) \(\Leftrightarrow\left(2x-3-7\right)\left(2x-3+7\right)=0\\ \Leftrightarrow\left(2x-10\right)\left(2x+4\right)=0\\ \Leftrightarrow\left(x-5\right)\left(x+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=5\\x=-2\end{matrix}\right.\)

d) \(\Leftrightarrow\left(2x+7\right)\left(x-5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{7}{2}\\x=5\end{matrix}\right.\)

c: Ta có: \(\left(x+3\right)^3-x\left(3x+1\right)^2+\left(2x+1\right)\left(4x^2-2x+1\right)=28\)

\(\Leftrightarrow x^3+9x^2+27x+27-9x^3-6x^2-x+8x^3+1=28\)

\(\Leftrightarrow3x^2+26x=0\)

\(\Leftrightarrow x\left(3x+26\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{26}{3}\end{matrix}\right.\)

23 tháng 9 2021

\(a,\Leftrightarrow x^2+8x+16-x^3-12x^2=16\\ \Leftrightarrow x^3+11x^2-8x=0\\ \Leftrightarrow x\left(x^2+11x-8\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x^2+11x-8=0\left(1\right)\end{matrix}\right.\\ \Delta\left(1\right)=121+32=153\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-11-3\sqrt{17}}{2}\\x=\dfrac{-11+3\sqrt{17}}{2}\end{matrix}\right.\\ S=\left\{0;\dfrac{-11-3\sqrt{17}}{2};\dfrac{-11+3\sqrt{17}}{2}\right\}\)

\(c,\Leftrightarrow x^3+9x^2+27x+27-9x^3-6x^2-x+8x^3+1=28\\ \Leftrightarrow3x^2+26x=0\\ \Leftrightarrow x\left(3x+26\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{26}{3}\end{matrix}\right.\\ d,\Leftrightarrow x^3-6x^2+12x-8-x^3-125-6x^2=11\\ \Leftrightarrow-12x^2+12x-144=0\\ \Leftrightarrow x^2-x+12=0\Leftrightarrow\left[{}\begin{matrix}x=4\\x=3\end{matrix}\right.\)

2 tháng 10 2021

a) \(\Rightarrow\left(x-1\right)^2=25\)

\(\Rightarrow\left[{}\begin{matrix}x-1=5\\x-1=-5\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=6\\x=-4\end{matrix}\right.\)

b) \(\Rightarrow25x^2+10x+1-25x^2+9=30\)

\(\Rightarrow10x=20\Rightarrow x=2\)

2 tháng 10 2021

a. x2 - 2x + 1 = 25

<=> x2 - 2x - 24 = 0

<=> x2 - 6x + 4x - 24 = 0

<=> x(x - 6) + 4(x - 6) = 0

<=> (x + 4)(x - 6) = 0

<=> \(\left[{}\begin{matrix}x+4=0\\x-6=0\end{matrix}\right.\)

<=> \(\left[{}\begin{matrix}x=-4\\x=6\end{matrix}\right.\)

b. (5x + 1)2 - (5x - 3)(5x + 3) = 30

<=> 25x2 + 10x + 1 - 25x2 + 9 = 30

<=> 25x2 - 25x2 + 10x = 30 - 1 - 9

<=> 10x = 20

<=> x = 2

1 tháng 11 2021

a) \(\Rightarrow\left(2x-3\right)^2=49\)

\(\Rightarrow\left[{}\begin{matrix}2x-3=7\\2x-3=-7\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=5\\x=-2\end{matrix}\right.\)

b) \(\Rightarrow\left(x-5\right)\left(2x+7\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=5\\x=-\dfrac{7}{2}\end{matrix}\right.\)

c) \(\Rightarrow x\left(x-5\right)+2\left(x-5\right)=0\Rightarrow\left(x-5\right)\left(x+2\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=5\\x=-2\end{matrix}\right.\)

1 tháng 11 2021

a, ⇒ (2x - 3)2 = 49

    ⇒  (2x - 3)2 = \(\left(\pm7\right)^2\)

    ⇒ \(\left[{}\begin{matrix}2x-3=7\\2x-3=-7\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x=10\\2x=-4\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=5\\x=-2\end{matrix}\right.\)

b, ⇒ 2x.(x - 5) + 7.(x - 5) = 0

    ⇒ (x - 5).(2x + 7)  = 0

    ⇒ \(\left[{}\begin{matrix}x-5=0\\2x+7=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=5\\2x=-7\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=5\\x=-\dfrac{7}{2}\end{matrix}\right.\)

c, ⇒ x2 - 5x + 2x - 10 = 0

    ⇒ (x2 - 5x) + (2x - 10) = 0

    ⇒ x.(x - 5) +2.(x - 5)    = 0

    ⇒ (x - 5).(x + 2)=0

    \(\Rightarrow\left[{}\begin{matrix}x+2=0\\x-5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-2\\x=5\end{matrix}\right.\)

Bài 2:

a: Ta có: \(A=\left(x+1\right)^3+\left(x-1\right)^3\)

\(=x^3+3x^2+3x+1+x^3-3x^2+3x-1\)

\(=2x^3+6x\)

b: Ta có: \(B=\left(x-3\right)^3-\left(x+3\right)\left(x^2-3x+9\right)+\left(3x-1\right)\left(3x+1\right)\)

\(=x^3-9x^2+27x-27-x^3-27+9x^2-1\)

\(=27x-55\)

29 tháng 10 2021

Bài 1: 

b: \(3x-6=x^2-16\)

\(\Leftrightarrow x^2-3x-10=0\)

\(\Leftrightarrow\left(x-5\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-2\end{matrix}\right.\)

30 tháng 9 2023

Bài 2:

a) (x+7)-13=25 

  (x+7) - 13 = 25

  (x+7) - 13 + 13 = 25 + 13

  x + 7 = 38

  (x + 7) - 7 = 38 - 7

  x = 31

  

Vậy, giá trị của x là 31.

 

b) ( 33-5(x-4)=13 

  33 - 5(x-4) = 13

  33 - 5x + 20 = 13

  -5x + 53 = 13

  -5x = 13 - 53

  -5x = -40

  (-5x)/-5 = (-40)/-5

  x = 8

  

Vậy, giá trị của x là 8.

 

C( x+6=3x 

  x + 6 = 3x

  x + 6 - 6 = 3x - 6

  x = 3x - 6

  x - 3x = -6

  (-2x) = -6

  (-2x)/-2 = (-6)/-2

  x = 3

  

Vậy, giá trị của x là 3.

 

d) ( 5x+3=2x+12

  5x + 3 = 2x + 12

  5x - 2x = 12 - 3

  3x = 9

  (3x)/3 = 9/3

  x = 3

  

Vậy, giá trị của x là 3.

30 tháng 9 2023

`#3107.101107`

1.

a)

`34046 = 30000 + 4000 + 40 + 6`

b)

201012 = 200000 + 1000 + 12`

c)

\(\overline{a2b}=a\times100+20+b\)

d)

\(\overline{abc1}=a\times1000+b\times100+c\times10+1\)

2.

a)

`(x + 7) - 13 = 25`

`=> x + 7 = 25 - 13`

`=> x + 7 = 12`

`=> x = 12 - 7`

`=> x = 5`

Vậy, `x = 5`

b)

`33 - 5(x - 4) = 13`

`=> 5(x - 4) = 33 - 13`

`=> 5(x - 4) = 20`

`=> x - 4 = 20 \div 5`

`=> x - 4 = 4`

`=> x = 4 + 4`

`=> x = 8`

Vậy, `x = 8`

c)

`x + 6 = 3x`

`=> x + 6 - 3x = 0`

`=> (x - 3x) + 6 = 0`

`=> -2x + 6 = 0`

`=> -2x = -6`

`=> 2x = 6`

`=> x = 6 \div 2`

`=> x = 3`

Vậy, `x = 3`

d)

`5x + 3 = 2x + 12`

`=> 5x - 2x = 12 - 3`

`=> 3x = 9`

`=> x = 9 \div 3`

`=> x = 3`

Vậy, `x = 3.`

____

`@` Quy tắc chuyển vế, đổi dấu:

- Khi chuyển vế 1 số hạng vế này qua vế kia, ta đổi dấu cho số hạng đó. Nếu số hạng đó mang dấu dương (+) khi chuyển vế đổi thành dấu âm (-), ngược lại, nếu số hạng đó mang dấu âm (-) khi chuyển vế đối thành dấu dương (+).

\(#V3L6\)

22 tháng 10 2021

\(\left(2x-3\right)^2=7^2\)

\(2x-3=7\)

\(2x=10\)

\(x=5\)

Vậy x=5

22 tháng 10 2021

a: \(\left(2x-3\right)^2-49=0\)

\(\Leftrightarrow\left(2x+4\right)\left(2x-10\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=5\end{matrix}\right.\)