K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Lesson 1: analyzing the polynomial factors.Notes + 2 x-1x 3 + 6x2 + 11x + 6x 4 + 2 x 2-3AB + ac + b2 + 2bc + c2A3-b3 + c3 + 3abcLesson 2: for functions: search conditions of x to A means.A shortening.Computer x to A < 1.Post 3: prove the inequality:For a + b + c = 0. Prove that: a3 + b3 + c3 = 3abc.For a, b, c are the sidelengths of the triangle. Proof that:Prove that x 5 + y5 ≥ x4y + xy4 with x, y ≠ 0 and x + y ≥ 0Lesson 4: solve the equation:x 2-3 x + 2 + | x-1 | = 0Lesson 5: find the...
Đọc tiếp

Lesson 1: analyzing the polynomial factors.

Notes + 2 x-1
x 3 + 6x2 + 11x + 6
x 4 + 2 x 2-3
AB + ac + b2 + 2bc + c2
A3-b3 + c3 + 3abc
Lesson 2: for functions: 

search conditions of x to A means.
A shortening.
Computer x to A < 1.
Post 3: prove the inequality:

For a + b + c = 0. Prove that: a3 + b3 + c3 = 3abc.
For a, b, c are the sidelengths of the triangle. Proof that:


Prove that x 5 + y5 ≥ x4y + xy4 with x, y ≠ 0 and x + y ≥ 0
Lesson 4: solve the equation:

x 2-3 x + 2 + | x-1 | = 0


Lesson 5: find the largest and smallest value (if any)

A = x 2-2 x + 5
B =-2 x 2-4 x + 1.
C = 
Lesson 6: calculate the value of expression.

Know a – b = 7 feature: A = (a + 1) a2-b2 (b-1) + ab-3ab (a-b + 1)
For three numbers a, b, c is not zero catches up deals for equality: 
Computer: P = 

Article 7: proof that

8351634 + 8241142 divisible 26.
A = n3 + 6n2-19n-24 divisible by 6.
B = (10n-9n-1) divisible 27 with n in N *.
Article 8:

In the motorcycle race three cars depart at once. The second car in a one-hour run slower than the first car 15 km and 3 km third cars. rapidly should the destination more slowly the first car 12 minutes and the third car earlier today. No stops along the way. Calculate the speed of each car, race distance and the time each car

0
16 tháng 1 2017

a] 
x^3 + 6x^2 + 11x + 6 
= x^3 + x^2 + 5x^2 + 5x + 6x + 6 
= x^2(x + 1) + 5x(x + 1) + 6(x + 1) 
= (x + 1)(x^2 + 5x + 6) 
= (x + 1)(x^2 + 2x + 3x + 6) 
= (x + 1)[x(x + 2) + 3(x + 2) 
= (x + 1)(x + 2)(x + 3) 

b thiếu đề bài nè  x^4 - 2x^2 - 3 = 0 
(x^2)(x^2)-2(x^2)-3=0 
(x^2)(x^2)-3(x^2)+1(x^2)-3=0 
(x^2)(x^2-3) + 1(x^2-3) = 0 
(x^2-3) (x^2+1)=0 

c bó tay

d (a3 + b3 + c3) - 3abc
= ( (a+b+c)3 - 3ab(a+b) -3bc(b+c) -3ac(a+c) - 6abc) - 3abc 
= (a+b+c)3 - 3ab(a+b) - 3bc(b+c) - 3ac(a+c) - 9abc 
= (a+b+c)3 
- 3ab(a+b) - 3abc 
- 3bc(b+c) - 3abc 
- 3ac(a+c) - 3abc 
= (a+b+c)3 
- 3ab(a+b+c) 
- 3bc(a+b+c) 
- 3ac(a+b+c) 
= (a+b+c)( (a+b+c)2 - 3ab -3bc 3ac) 
=(a+b+c)( a2 + b2 + c2 + 2ab +2bc + 2ca -3ab - 3bc -3ac) 
=(a+b+c) (a2 + b2 + c2 - ab - bc -ac) 

ý d hình như đề sai

16 tháng 1 2017

chị ui kết bạn với em đi em hết lượt kết bạn rùi 

em học lớp 5 

9 tháng 1 2018

1)   \(3x^2+2x-1\)

\(=3x^2+3x-x-1\)

\(=3x\left(x+1\right)-\left(x+1\right)\)

\(=\left(x+1\right)\left(3x-1\right)\)

2)   \(x^3+6x^2+11x+6\)

\(=x^3+x^2+5x^2+5x+6x+6\)

\(=x^2\left(x+1\right)+5x\left(x+1\right)+6\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2+5x+6\right)\)

\(=\left(x+1\right)\left(x+2x+3x+6\right)\)

\(=\left(x+1\right)\left(x+2\right)\left(x+3\right)\)

3)   \(x^4+2x^2-3\)

\(=\left(x^2+1\right)^2-4\)

\(=\left(x^2+1-2\right)\left(x^2+1+2\right)\)

\(=\left(x^2-1\right)\left(x^2+3\right)\)

\(=\left(x-1\right)\left(x+1\right)\left(x^2+3\right)\)

4)   \(ab+ac+b^2+2bc+c^2\)

\(=a\left(b+c\right)+\left(b+c\right)^2\)

\(=\left(b+c\right)\left(a+b+c\right)\)

1, \(3x^2+2x-1\)

\(=3x^2+3x-x-1\)

\(=3x\left(x+1\right)-\left(x+1\right)\)

\(=\left(x+1\right)\left(3x-1\right)\)

2, \(x^3+6x^2+11x+6\)

\(=\left(x^3+3x^2\right)+\left(3x^2+9x\right)+\left(2x+6\right)\)

\(=x^2\left(x+3\right)+3x\left(x+3\right)+2\left(x+3\right)\)

\(=\left(x+3\right)\left(x^2+3x+2\right)\)

\(=\left(x+3\right)\left(x+1\right)\left(x+2\right)\)

14 tháng 5 2021

a )

`VP= (a+b)^3-3ab(a+b)`

     `=a^3+3a^2b+3ab^2+b^3-3a^2b-3ab^2`

     `=a^3+b^3 =VT (đpcm)`

b) 

b) Ta có

`VT=a3+b3+c3−3abc`

     `=(a+b)3−3ab(a+b)+c3−3abc`

     `=[(a+b)3+c3]−3ab(a+b+c)`

     `=(a+b+c)[(a+b)2+c2−c(a+b)]−3ab(a+b+c)`

     `=(a+b+c)(a2+b2+2ab+c2−ac−bc−3ab)`

    `=(a+b+c)(a2+b2+c2−ab−bc−ca)=VP`

  
14 tháng 5 2021

 

a) Ta có:

`VP= (a+b)^3-3ab(a+b)`

     `=a^3 + b^3+3ab ( a + b )- 3ab ( a + b )`

     `=a^3 + b^3=VT(dpcm)`

b) Ta có

`VT=a^3+b^3+c^3−3abc`

     `=(a+b)^3−3ab(a+b)+c^3−3abc`

     `=[(a+b)^3+c^3]−3ab(a+b+c)`

     `=(a+b+c)[(a+b)^2+c^2−c(a+b)]−3ab(a+b+c)`

     `=(a+b+c)(a^2+b^2+2ab+c^2−ac−bc−3ab)`

    `=(a+b+c)(a^2+b^2+c^2−ab−bc−ca)=VP`

10 tháng 10 2021

\(4x^2-1=\left(2x-1\right)\left(2x+1\right)\)

\(x\left(x+y\right)-6x-6y=\left(x+y\right)\left(x-6\right)\)

\(x^2-2xy+y^2-z^2=\left(x-y-z\right)\left(x-y+z\right)\)

\(9x^2-\dfrac{1}{4}=\left(3x-\dfrac{1}{2}\right)\left(3x+\dfrac{1}{2}\right)\)

21 tháng 3 2017

thầy mình bảo phân tích cách này thành nhân tử rồi nhớ nghiệm và máy tính mà bấm chứ chắc cái này cao siêu quá chưa đến lượt bọn mình giải đâu

16 tháng 8 2021

2

Ta có:

VP=(a+b)3−3ab(a+b)VP=(a+b)3-3ab(a+b)

     =a3+b3+3ab(a+b)−3ab(a+b)=a3+b3+3ab(a+b)-3ab(a+b)

     =a3+b3=VT(dpcm)

16 tháng 8 2021

1, \(VT=a^2+b^2=a^2+b^2+2ab-2ab=\left(a+b\right)^2-2ab=VP\left(đpcm\right)\)